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Abstract

A growing literature uses value-added (VA) models to quantify principals’ contribu-

tions to improving student outcomes. Principal VA is typically estimated using a

connected networks model that includes both principal and school fixed effects (FE) to

isolate principal effectiveness from fixed school factors that principals cannot control.

While conceptually appealing, high-dimensional FE regression models require sufficient

variation to produce accurate VA estimates. Using simulation methods applied to ad-

ministrative data from Tennessee and New York City, we show that limited mobility of

principals among schools yields connected networks that are extremely sparse, where

VA estimates are either highly localized or statistically unreliable. Employing a ran-

dom effects shrinkage estimator, however, can alleviate estimation error to increase the

reliability of principal VA.
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1 Introduction

A growing literature seeks to estimate principal value-added (VA): statistical models

that isolate the contributions of individual principals to school performance, most of-

ten conceptualized as student test score gains, in an education production function.

VA methods applied to principals can provide answers to two important questions: (1)

How important are principals as inputs to student learning? (2) Who is an effective

principal? Extant work consistently finds that principals matter, with the magnitude

of principal effects typically ranging between 0.05 and 0.20 student-level standard de-

viations (SD) (Grissom, Kalogrides, and Loeb 2015; Bartanen 2020; Dhuey and Smith

2018; Chiang, Lipscomb, and Gill 2016; Branch, Hanushek, and Rivkin 2012). In other

words, a 1 SD increase in principal VA increases student achievement by 0.05 to 0.20

SD.

A key empirical challenge to estimating principal effects is to account for myriad

school- or district-level factors that affect student learning but that principals cannot

control. For example, principals cannot control the neighborhood in which the school

is located and they similarly face constraints around teacher hiring and/or retention

due to district policies or local labor market conditions. These school factors are often

difficult to measure and may not be well-captured by available proxy measures, such

as average student demographics. The approach taken in prior studies is to estimate a

two-way regression model that includes principal and school fixed effects (FE), under

the assumption that such unobserved school factors are largely fixed across time. In this

model, identification of the principal fixed effects (i.e., the VA estimates) is restricted

to within-school variation, but additional across-school comparisons of principals are

possible if some principals work in multiple schools over time. Mobility groups formed

by principals and schools due to principals transitioning across schools are termed

“connected networks” in the principal VA literature (e.g., Bartanen 2020; Chiang,

Lipscomb, and Gill 2016; Burkhauser 2017).1

1. While defined later, a “connected network” comprises the largest possible set of schools in which every
school has had at least one principal move to at least one other school in the network.
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The appeal of the connected networks model is that it can yield VA estimates where

principals have a large comparison set, while also avoiding misattribution of school ef-

fects to principals. Despite its common use in estimating principal VA, however, our

understanding of the properties of estimates from the connected networks approach

remains limited. The inclusion of school FE creates additional challenges stemming

from the limited mobility of principals among schools. Whereas other applications of

two-way network models may benefit from observing many individuals working in mul-

tiple firms (or teachers in multiple schools), a school typically has only one principal

at time and a majority of principals lead only one school in their career. This limited

mobility potentially leads to weakly identified FE estimates that are unreliable mea-

sures of principal quality and overstate the magnitude of principals’ effects (Jochmans

and Weidner 2019).

Connected networks models further hinge on the fundamental assumption that a

principal’s effectiveness is the same in any two schools. This assumption allows for the

indirect comparison of principals who never worked in the same school, which is a key

practical benefit of the connected networks model. Given prior work demonstrating

that leadership is a relational process and that principals’ impacts on student achieve-

ment are largely mediated through other school-level factors (e.g., Hallinger and Heck

1998; Sebastian and Allensworth 2012), such an assumption may be unrealistic. In

particular, there may exist principal–school complementarities whereby part of a prin-

cipal’s effect reflects how well matched they are to a particular school context (Dhuey

and Smith 2018).

Using a simulation approach, this paper helps to fill a gap by investigating the accu-

racy of connected network models for estimating principal effects. Simulation studies

have the advantage of creating controlled conditions where the performance of VA es-

timators can be tested according to different assumptions about the data-generation

process. In particular, this approach allows us to focus on the aforementioned issues

related to the connected networks approach, as opposed to principal VA modeling more

generally. In that sense, our simulation is conceptually similar to those used to examine
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the accuracy of teacher VA models under different assumptions about the nonrandom

sorting of students to teachers (e.g., Guarino, Reckase, and Wooldridge 2015; Guarino

et al. 2015). To supplement the insights drawn from the simulation, we also provide a

brief empirical application using actual test scores.

Our simulation is built from administrative datasets from Tennessee and New York

City (NYC). That is, using the connected networks formed by actual mobility patterns

of principals and schools over long panels, we generate simulated test scores where the

true principal effects are known. We then apply VA models to the simulated data and

compare the estimated and true principal effects. We consider two questions regarding

the performance of principal VAMs: (1) How accurately do VAMs rank principals

according to their true effects? (2) To what extent does the magnitude of principal VA

accurately reflect the true magnitude of principals’ effects? Answers to these questions

can provide insight about whether principal VA models are likely to provide accurate

results in real-world conditions.

Our results uncover a key tradeoff between the statistical precision of principal VA

estimates and their practical utility. Even in large-scale datasets where we observe

thousands of principal transitions, the underlying network structure of principals and

schools is very weak. This yields two distinct types of connected networks. First, many

principals belong to small networks that contain one or two schools, meaning that

their estimated VA reflects performance relative to only a handful of other principals.

While principal VA from small connected networks is precisely estimated, such localized

performance measures may lack practical usefulness (e.g., as an accountability metric).

Principals in large networks, on the other hand, can be compared to hundreds of other

principals. However, the underlying network is weakly connected, undermining the

reliability of VA estimates and producing inaccurate rankings of principals. Further,

because schools in large connected networks are typically linked through only one or

two mobile principals, inaccuracy is amplified substantially in the presence of principal–

school complementarities.

A similar tradeoff exists for using principal VA models to understand the magnitude
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of principals’ impacts on student outcomes. In small networks, school FE erroneously

eliminate part of the real difference in principal quality, leading to an understatement

of the importance of principals. While large networks circumvent this problem, they

overstate the magnitude of principal effects because of the estimation error introduced

by weak network structures.

Given the estimation error of principal VA estimates in large networks, we further

examine whether shrinkage approaches can improve correlations between principals’

estimated and true effects. Employing a mixed model that treats principal effects as

random greatly reduces estimation error in large networks. This method improves

the precision of principal VA and yields a substantially more accurate estimate of the

magnitude of principal effects.

This paper contributes to our understanding of principal VA models, where evi-

dence on their validity and reliability remains limited. This dearth of evidence stands

in stark contrast to the teacher VA literature, where a large number of studies have

investigated these properties (see Koedel, Mihaly, and Rockoff 2015, for a review). We

also contribute to a larger literature utilizing two-way regression models in the context

of matched employer–employee datasets. Most notably, we provide an application of

recent theoretical work (e.g., Jochmans and Weidner 2019; Verdier 2018; Kline, Saggio,

and Sølvsten 2018) concerning inference of fixed effects estimated from network data.

We also build on related applications using school fixed effects to control for unob-

served school heterogeneity in value-added modeling, including for teachers (Mansfield

2015) and teacher preparation programs (e.g., Mihaly et al. 2013). These applications

highlight some key challenges for analyzing connected networks that we consider in the

context of the principal labor market, with the added benefit of a simulation analysis

that can provide deeper insight around the accuracy of VA models with school FE.

The rest of the paper is organized as follows. Section 2 outlines the estimation of

principal effects in the connected networks model and the challenges it creates for the

accuracy of principal VA. In section 3 we describe our simulation procedures and the

data sources that form the network structure for our simulation. Section 4 presents
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our baseline simulation results, results using shrinkage approaches, and an empirical

application that uses actual test scores from Tennessee. Section 5 concludes with a

discussion of implications and areas for future work.

2 Connected Networks in Principal Value-Added

Models

In this section, we first outline the basic empirical challenge of estimating principal

effects on student outcomes, which is to separate principals’ contributions from school

factors they cannot control. This leads to the concept of connected networks of prin-

cipals and schools. We then describe the challenges that connected network models

introduce, which inform our simulation analysis.

2.1 The Principal and School Fixed Effects Model

Principal VA models seek to estimate the contribution of individual principals to stu-

dent test score growth. As with any VA approach, a key empirical challenge is to

isolate principal effectiveness from other factors that affect student outcomes but that

are not attributable to principals. This is particularly challenging for principals, whose

impacts on student outcomes are largely indirect. Whereas teachers provide direct in-

struction to students, principals affect student achievement growth through malleable

school factors, such as establishing a positive school climate or hiring and retaining

effective teachers (e.g., Grissom and Bartanen 2019; Kraft, Marinell, and Yee 2016;

Jacob 2011; Hallinger and Heck 1998; Sebastian and Allensworth 2012; Coelli and

Green 2012). School performance, however, is also affected by fixed school factors that

principals cannot control, such as the neighborhood or the quality of school facilities

(Chiang, Lipscomb, and Gill 2016; Grissom, Kalogrides, and Loeb 2015). Further,

there may exist a correlation between principal quality and such factors, whereby cer-

tain schools are systematically more or less likely to be led by high-quality principals
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(Branch, Hanushek, and Rivkin 2012; Grissom, Bartanen, and Mitani 2019).

On a fundamental level, a principal’s VA estimate is the mean test score resid-

ual across all of the students who were in the school during the principal’s tenure.

A high-VA principal, then, is one whose students tend to have positive test score

residuals. Crucial to the approach is that the residualization adequately accounts for

school factors that should not be attributed to principal quality. Particularly neces-

sary is adjusting for students’ background characteristics to address the non-random

sorting of students to schools. These controls typically include students’ prior-year

test scores, demographic characteristics (e.g., race/ethnicity, free/reduced-price lunch

eligibility) and academic characteristics (e.g., special education status). VA models

also commonly control for school-level averages of student background characteristics

to further account for between-school heterogeneity.

Even with controls for observable student and school characteristics, there likely

remains substantial unexplained school-level variation that is not part of a principal’s

effect. The quality of the school’s neighborhood, for instance, may only be partially

captured by students’ background characteristics.2 To better account for unmeasured

school factors, prior studies estimating principal VA nearly universally include school

fixed effects in the control vector, leading to the following model:

Yijst = λ(f(Yi,t−1)) + ωXit + φZst + δj + γs + εijst (1)

where δj and γs are vectors of indicator variables (i.e., fixed effects) for principals and

schools, respectively.

2. We provide empirical support for this claim in Appendix Table C.1, which shows variance component
estimates from mixed models in Tennessee and New York City using different sets of controls. Even after
controlling for prior-year test scores, student characteristics, and school-by-year means of student charac-
teristics, the school-level variance component remains roughly equal in magnitude to the principal variance
component, underscoring the potential for bias in principal VA estimates that do not account for unobserved
school heterogeneity.
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2.2 Connected Networks

Estimating effects for both principal and school is challenging because each school has

only one principal at a time, meaning that in cross-sectional data δj and γs are perfectly

collinear. With panel data of sufficient length, however, schools will have multiple

principals, which creates the necessary within-school variation required to estimate

coefficients for δj . The interpretation of principal VA estimates between models with

and without school fixed effects, however, can be very different. Without school fixed

effects, VA estimates produce a global ranking of all observed principals. When school

FE are included, principal VA estimates produce local rankings. Specifically, with

school FE, principals can only be compared within a connected network of schools,

where a network is the largest possible set of schools in which every school has had

at least one principal transfer to at least one other school in the network during the

analysis period.

The size of a connected network can range from a single school to the entire set of

schools, depending on the number of schools and years in the panel and the mobility

patterns of principals across schools. A single-school network will result when none of

the principals who worked in that school were observed working in a different school.

A multi-school connected network will form when a principal who works in school A

moves to school B. This connection allows for the comparison of all principals who ever

worked in school A or school B. If school A or school B further has a principal who also

worked in school C, the connected network grows to include all principals who ever

worked in one of these three schools. Given sufficient mobility, a connected network

can theoretically include the complete set of observed schools.

In practical applications, however, connected networks of principals and schools

tend to be small, often comprised by only a single school. Even when longer panels

of data are available, high principal attrition rates (i.e., exiting from the principalship

entirely) mean that there are relatively few principals who transfer between schools.

For instance, when examining data for Pennsylvania students in grades 4–8 from the

2008–09 to 2012–13 school years (a comparatively small panel), Chiang, Lipscomb, and
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Gill (2016) find that 76 percent of connected networks are single-school and only 2.6%

of networks included four or more schools. Similarly, of the connected networks present

in Burkhauser (2017)’s data spanning 2005–06 to 2011–12, 57% were networks with

only two principals, indicating that a majority of school leaders were being compared to

only one other leader. In a statewide panel spanning 10 years, Bartanen (2020) observes

almost 20% of principals in networks with 10 or more schools, with 39% of principals in

single-school networks. In sum, connected networks of schools and principals generally

tend to be small, limiting the comparison set of principals and leading to relatively

local measures of principal quality.

While the interpretation of principal VA estimates in network models as local mea-

sures of principal effectiveness has been well-established in prior studies, there has

been virtually no work that investigates their validity and reliability. Consequently,

we know little about whether these models produce accurate measures of principals’

effects on student outcomes. While the inclusion of school FE is conceptually appealing

as a means to control for unobserved factors, it also introduces a number of additional

challenges that have not been given much attention. Our analysis focuses on three of

these challenges, which we outline below.

2.3 Estimation Error in Sparse Networks

While prior studies make clear that including school FE in principal VA models changes

the interpretation of a principal’s estimated effect, they fail to note that school FE intro-

duces estimation error into each estimate, which lowers reliability and leads to upward

bias in the estimated magnitude of principal effects. Recently, econometricians have

paid increasing attention to two-way regression models using network data (Jochmans

and Weidner 2019; Verdier 2018); the principal and school fixed effect model is one

application of such models. When examining these models, Jochmans and Weidner

(2019) demonstrate that the statistical precision of individual effects is determined by

the connectivity structure of the underlying network. In the case of principal VA,

limited mobility of principals among schools means both that many principals are in
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small networks and that estimates for principals in larger networks contain consider-

able noise. Intuitively, this noise comes from variance inflation, as indicator variables

for each principal and school are highly correlated with one another.

Specifically, Jochmans and Weidner (2019) show that the two-way fixed effects

model (in our case, principals and schools) can be analyzed as a weighted bipar-

tite graph, where edges connecting principals to schools are weighted by the number

student-by-year observations. The statistical precision of the principal fixed effects is

determined by how strongly connected principals are within the given connected net-

work. In particular, they demonstrate that bottlenecks in the network (i.e., where two

larger sets of principals are connected only through a single principal) lead to variance

inflation and, ultimately, imprecise VA estimates. Mathematically, these bottlenecks

can be summarized by the smallest nonzero eigenvalue (λ2) of the graph’s normalized

Laplacian matrix, where λ2 → 0 as the network becomes more sparse.

Variance inflation in principal VA models has not been formally investigated, though

prior work tends to conclude that VA estimates are precise, given the large number

of student-by-year observations that contribute to estimating each principal’s effect.

Thus, our analysis contributes by examining variance inflation due to the structure of

connected networks, which we show theoretically using the techniques from Jochmans

and Weidner (2019) and through our simulation that uses the actual connected net-

works of principals in Tennessee and New York City.

2.4 Downward Bias of the Variance in Small Networks

While estimation error due to sparse network structure creates an upward bias in

the estimated magnitude of principal effects, an additional challenge introduced by

the inclusion of school fixed effects is a downward bias in the estimated magnitude,

concentrated in small networks that have few principals. To see this, consider a scenario

where each school has two principals and no principals switch schools, thus making each

school its own connected network. In expectation, the mean principal effect in each

network is zero, but the observed mean will be nonzero due to sampling variation. In the
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connected networks approach, this sampling variation—which reflects real information

about principal quality—will be captured by the school fixed effect, which creates a

downward bias in the estimated variance of the principal effect that decreases as the

number of principals increases. This downward bias works in the opposite direction as

estimation error from the sparse network structure.

As connected networks grow larger, this downward bias in the variance will decrease,

which will make the empirical distribution of VA estimates a better representation of

the true variance of principal effects. As described in the previous section, however,

large networks may suffer from greater estimation error. These dynamics may help

to explain why prior studies reach somewhat different estimates of the magnitude of

principal effects despite similar empirical approaches. Bartanen (2020) and Dhuey

and Smith (2018), for instance, draw on long panels from statewide data (where more

principals are in large networks) and find larger SD of principal VA estimates. By

contrast, Grissom, Kalogrides, and Loeb (2015) and Branch, Hanushek, and Rivkin

(2012) find lower SDs. In the former study, principal VA is estimated using just a

single district across an 8-year panel. While Branch, Hanushek, and Rivkin (2012)

draw on statewide data from Texas, they restrict the size of connected networks to a

single school by estimating principal-by-school FE.

2.5 Principal–School Complementarities

As outlined in the connected networks section, principal VA models that include school

FE result in VA estimates that are local to the principal’s connected network. While

the identifying variation is restricted to comparisons of principals who worked in the

same school, indirect comparisons are made possible via principals who work in multiple

schools across the study period. Intuitively, principal A, who worked in school X, can

be compared to principal B, who worked in school Y, if there exists a principal C who

worked in both schools. Connected networks can grow large as the length of the panel

increases or as principals move between schools more frequently.

Underpinning these indirect comparisons of principals who never worked in the same
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school is the assumption that the effectiveness of the mobile principal (i.e., the one who

connects the two schools) is fixed. More specifically, the connected networks approach

requires an assumption that there are no complementarities or “match effects” between

principals and schools. Taking the simple example above, comparing principal A in

school X to principal B in school Y breaks down if principal C’s effectiveness is different

in school X versus school Y. If, for example, principal A and principal B are equally

effective, but principal C is better matched in school X than school Y, then principal

A will appear less effective than principal B in the connected networks model.

While there has been little empirical work examining principal–school complemen-

tarities in the context of VA models (see Dhuey and Smith 2018, for an exception),

prior studies demonstrate that principals operate within the contexts of their schools.

The idea of “fit” between an individual and their work environment was formally

introduced in the industrial-organizational psychology literature, and coined “person-

environment (PE) fit” (Kristof-Brown, Zimmerman, and Johnson 2005). PE fit refers

to the compatibility between a person and their work environment, especially based on

the match between their respective characteristics (Kristof-Brown, Zimmerman, and

Johnson 2005; Miller et al. 2020). Direct examinations of this theory in education have

been limited thus far (see Miller et al. 2020; Player et al. 2017; Jackson 2013, for some

recent exceptions in the teacher literature); however recent work in the educational

leadership literature has begun to explore related issues. For instance, research shows

that Black principals increase the likelihood of Black teachers being hired and retained

(Bartanen and Grissom 2021), and male teachers are more likely to turn over under fe-

male principals and request to transfer to schools with male principals (Husain, Matsa,

and Miller 2018). Evidently, principals experience varied levels of success based on

teacher demographics in their schools, speaking directly to the concept of PE fit.

At first blush, incorporating match effects into a principal VA model seems nearly

impossible given that the vast majority of principals are not observed in multiple

schools. As our prior results demonstrate, even separating fixed principal and school

effects places considerable constraints on the data. Match effects add yet another
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layer of complexity. Further, without considerable principal mobility, FE strategies

to identify match effects will suffer from a considerable small sample bias (Jackson

2013). Nonetheless, we can examine how the accuracy of principal VA models—which

typically assume portability of principal effectiveness across schools—changes when

match effects are a large component of the principal effect.

3 Simulation

To examine the accuracy of principal VA from connected network models, we employ a

simulation that compares principals’ VA estimates to known effects, which are drawn

randomly. Simulation approaches have been used previously to examine teacher VA

(e.g., Guarino et al. 2015; Guarino, Reckase, and Wooldridge 2015). Different from

simulation studies of teacher VA, however, we use administrative data from Tennessee

and NYC as the structure of the simulation. This is important because the focus of our

study is the connected network approach, and the accuracy of these estimates depends

on the network structure of the dataset. Specifically, for both contexts, we start with

a dataset at the student-by-year level that contains unique identifiers for student,

principal, and school. We then randomly draw the principal and school effects, and

generate student outcomes as a function of these effects. Below, we outline our assumed

data-generation process and simulation procedures.

3.1 Data-Generating Process

To isolate issues relevant to the connected networks approach, we assume a fairly

straightforward data-generating process for student test scores:

Aijst = λAijs,t−1 + θjst + ci + eijst (2)

where Aijs,t−1 is the prior-year score with a persistence parameter λ, θjst is the school-

by-year-specific contribution to the current-year score, ci is time-invariant student het-
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erogeneity, and eijst is a random error term that is assumed to be independent over

time. This mirrors the DGP used by Guarino et al. (2015) and Guarino, Reckase,

and Wooldridge (2015) in their teacher VA simulations, except that we conceptualize

school-level inputs as a single school-by-year effect rather than a set of teacher indica-

tor variables. We refer to the school-by-year effect as “school performance,” which is a

linear function of fixed principal quality (δj), a principal-by-school match effect (αjs),

fixed school-level factors that the principal cannot control (γs), and a school-by-year

random shock (vjst):

θjst = δj(t,s) + αjs(t,s) + γs + vjst (3)

In this DGP, changes in school performance (aside from yearly random deviations) are

completely determined by the principal.

As with any simulation approach, we acknowledge that this DGP is a simplifica-

tion, and that the true nature of principal effects may be substantially more complex.

In particular, we are assuming that principal and school quality are fixed and that

unobserved student heterogeneity has a constant effect in each year. We additionally

assume no time-varying student or family effects, no interactions between students and

principals or schools, and no peer effects. Finally, we assume that test scores have no

measurement error and there is no serial correlation in the error term. These simplifi-

cations allow us to understand more deeply how the principal and school fixed effects

model may or may not produce good estimates of principal quality according to the

structure of connected networks. If the models perform poorly here, they likely face

greater challenges in the context of real data.

We show our simulation parameters in Table 1. Panel B shows the parameters

that are fixed across all simulations, which we chose following Guarino, Reckase, and

Wooldridge (2015). Specifically, we assume a persistence parameter of 0.5, implying

that past school and family inputs decay geometrically across years (Sass, Semykina,

and Harris 2014), though our results are not particularly sensitive to this choice.
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Panel C shows the parameters that we vary across simulations: (1) the percentage

of variance in student gain scores explained by school performance; (2) the relative

magnitude of the principal-by-school match effect; and (3) the correlation between

principal quality and the fixed school effect. For the magnitude of the school perfor-

mance effect, we test scenarios where schools are responsible for 5% or 10% of the

total variance in student achievement growth, which corresponds roughly to the range

found using variance decomposition methods for math and reading scores in Tennessee

and New York City.3 Across the simulations, we hold constant the relative importance

of the principal (45% of the variance of the school performance effect), school (45%),

and random shock (10%), but we vary how much of the principal effect is the fixed

component (δj) versus the match component (αjs).
4 Specifically, we test models where

there is no match effect, where the match effect is roughly one-quarter of the total

principal effect, and where the match effect is slightly larger than the stable principal

effect. Finally, we examine different correlations (0.4, 0, and -0.4) between the fixed

principal and school effects, where a positive correlation means that effective principals

are more likely to work in effective schools.

3.2 Models for Estimating Principal VA

The purpose of our simulation is to compare principals’ true effects to their estimated

effects from VA models using principal and school fixed effects. Specifically, we esti-

mate:

Yijst = λ̃Yijs,t−1 + δ̃j + γ̃s + eijst (4)

As previously described, this model produces estimates of principal effects (δ̃j) that

are relative to the mean of principals within the same connected network. We refer

to this model as “principal FE + school FE” (P+S). One challenge is the estimation

3. These results are shown in Appendix Table C.1. Specifically, we estimate a school-by-year random
effects model for current-year test scores with controls for prior-year test scores, student characteristics, and
school-by-year means of student characteristics.

4. Supporting this choice, in the variance decomposition results shown in Appendix Table C.1, we find
that the variance components for principals and schools are roughly equal for both math and reading.
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of λ̃, which is the persistence parameter for prior-year test score, Yijs,t−1. As noted

in prior work, this estimate is biased upwards due to the presence of α (fixed student

heterogeneity) in the error term (Guarino, Reckase, and Wooldridge 2015; Andrabi

et al. 2011). Further, because most students remain in the same school (and have the

same principal) between year t− 1 and t, the upward bias in λ̃ leads to attenuation of

δ̃ and γ̃. Consistent with prior studies, however, we find that the impact of this bias

on the accuracy of VA estimates is small, and we thus proceed with the lagged score

model, which is the common approach for estimating principal effects.5

In addition to the P+S model, We also examine three alternative specifications.

First, to understand the importance of variance inflation introduced by the sparse

networks of principals and schools, we estimate models that restrict the size of these

networks. Specifically, we replace principal FE with principal-by-school FE, which we

refer to as “principal-school + school FE” (P-S+S). By estimating an effect for each

principal-by-school spell rather than each principal, connected networks are restricted

to a single school—principals cannot be compared across schools. While this greatly

limits the comparison set for many principals, it also reduces the noise component

inherent to the principal and school FE model.

Second, we estimate a model with principal-by-district FE and school FE (P-D+S).

P-D+S is a middle ground between P+S and P-S+S, allowing networks to be as large

as single district instead of limiting them to a single school. This model addresses

a concern that two disconnected districts may be linked by just a single principal

who moves between them, essentially creating a single connected network of the two

districts. Such an occurrence can create an extreme bottleneck that drives variance

inflation in the VA estimates. In essence, P-D+S is a method of attempting to eliminate

edges in connected networks that are most likely to represent bottlenecks.

5. In the case of teacher VA, models typically do not include school FE and students have new teachers
each year. Thus, the teacher effect is not a structural component of Yijs,t−1. In the case of principals, both

the school and principal contribute to the prior-year score. Any bias in λ̃, then, will necessarily lead to bias
in principal and school effects. However, because principals and schools have continued impacts on student
achievement and the prior-score is a good proxy for unobserved student heterogeneity, the bias does not
substantially diminish the accuracy of the principal VA estimates.
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Finally, we estimate a model that does not include school FE, which we call “princi-

pal FE only” (PO). This is effectively school value-added averaged over the principal’s

tenure in the school. While we anticipate that this model will perform poorly in sce-

narios where the fixed school component is a large contributor to school performance,

omitting school FE avoids the estimation challenges endemic to the connected networks

approach and allows for a global ranking of principals. In particular, this models helps

us to understand whether the bias/precision tradeoff makes sense when choosing to

include school fixed effects in principal VA models.

3.3 Assessing Model Performance

For each of the 18 unique combinations of the simulation parameters in Table 1, we run

10 Monte Carlo replications of the simulation, where the principal, match, school, and

student effects are drawn randomly. Given the large-scale nature of our datasets, our

results are highly consistent across replications. In the performance metrics described

below, we report the simple average across the 10 replications.

We consider two main questions about the performance of principal VA models. (1)

How accurately do VAMs rank principals according to their true effects? (2) To what

extent does the magnitude of principal VA accurately reflect the true magnitude of

principals’ effects? To answer these questions, we draw on simulated data to compare

the VA estimates to the true principal effects. In the models that contain school FE,

however, we must first adjust the true principal effects by centering them within con-

nected networks.6 Importantly, we define the true principal effect to include both the

fixed and match components of the principal effect.7 While there are certain scenar-

ios where isolating the fixed component of principal quality is desirable (e.g., wanting

6. Specifically, we residualize true principal effects on the vector of network FE. For the P-S+S and P-D+S
approaches, we effectively treat each principal-by-school or principal-by-district spell as a separate principal,
though our results are essentially identical if we weight our performance metrics inversely by the number of
spells per principal.

7. For principals who work in multiple schools, we construct a time-invariant total principal effect that
uses a weighted average (according to the number of student-by-year observations) of the match components
from each of their schools.
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to understand whether a principal is likely to be effective in a different school), our

primary aim is to evaluate models that attempt to measure the principal’s overall con-

tribution to improving student achievement in the schools where they actually worked,

regardless of whether it reflects a fixed or match effect.

We then report four summary measures. First, we compute the Pearson correlation

between the principal VA estimates and the true principal effects.8 A correlation of

one, to be specific, would indicate that the model perfectly ranks principals in terms of

their true effectiveness (within networks). Low correlations between estimated and true

principal effects may be a product of bias, imprecision, or both. Thus, we also report

performance measures that isolate these factors. Our second measure captures bias in

the VA estimates by estimating a simple regression of VA estimates as a function of

true effectiveness:

δ̃j = βδj + ej (5)

where δ̃j is principal j’s VA estimate and δj is their true effect. β = 1 would indicate

that the VA model produces unbiased estimates of principals’ true effects. If β > 1

(β < 1), the VA estimates amplify (condense) the true principal effects. A model that

produces VA estimates where β > 1 may correctly rank principals even though the

estimates are systematically biased. Note that because δ̃j is on the left-hand side of

the equation, estimation error will not lead to an attenuation of β.

Third, to understand the degree of variance inflation in the VA estimates, we report

the ratio of the standard deviations of the estimated and true principal effects: σδ̃j/σδJ .

A ratio of one would indicate that the distribution of principal VA estimates provides

a good approximation of the magnitude of principal effects on student outcomes, while

a ratio greater than (less than) one would indicate that the model overstates (under-

states) the magnitude of principal effects. In addition to capturing variance inflation

from estimation error, however, this ratio also captures downward bias in the variance

8. Using Spearman rank correlations yields very similar estimates.

17



due to small networks. Thus, to isolate the estimation error, our fourth summary mea-

sure is the ratio of the standard deviation (SD) of the estimated principal effects and

the true principal effects after demeaning them within the connected networks.

3.4 Data and Network Structure

We apply the DGP described by equation 2 to actual student-level administrative data

from Tennessee and NYC. For both datasets, we can identify the linkages between

students, schools, and principals, which allows us to test VA models using the actual

connected networks of principals. For Tennessee, the analysis years run from 2007–2019

and include 3,835 principals, 1,719 schools, and roughly 5.1 million student-by-year

observations. The NYC data goes from 2003–2017, containing 3,144 principals, 1,323

schools, and roughly 6.0 million student-by-year observations.

Table 2 summarizes the connected networks of principals in Tennessee and NYC,

respectively. In Tennessee, there are 762 individual networks, though most either

consist of a single school (74%) or are small (22.8%) which we define as a network

with between two and five schools. Single-school networks have 2.5 principals while

small networks have, 5.8 principals and 2.6 schools, on average. Tennessee also has

22 medium-sized networks (6–15 schools), comprising less than 3% of all individual

networks, and two large networks (16+ schools). Six percent of principals have no

network, meaning that they were the sole principal observed in a school across the

analysis years.

By contrast, NYC has fewer principals in medium- or large-sized networks despite

our access to a longer panel, and 60% of principals are in a single-school network. The

average number of principals and schools in the single and small-sized networks in NYC

are very similar to those found in Tennessee, as are the proportions of principals who

have no network. NYC’s lack of principals in medium- and large-sized networks reflects

an important difference in the principal labor markets between Tennessee and NYC;

while we do observe some principals who transfer schools in Tennessee (which creates

the necessary linkages for larger networks), the principal transfer rate in NYC is nearly

18



zero. In other words, principals who leave their positions in NYC almost exclusively

transfer out of the district (movement which we cannot observe with these data) or

move out of the principalship entirely (e.g., retirements).

The final three rows of Table 2 concern the connectivity structure of the networks,

which determines the precision of the FE estimates from the P+S model. Specifically,

principals’ VA estimates become more reliable as the network grows more dense, both

in terms of the number of direct comparisons between different principals as well as the

number of observations (i.e., student test scores). Following the approach of Jochmans

and Weidner (2019), we analyze each network as a bipartite graph to produce the

predicted amount of variance inflation (reported as a percentage of the error variance)

based on its normalized Laplacian matrix. We also report the smallest nonzero eigen-

value (λ2)—a global measure of connectivity where λ2 → 0 as the network becomes

more sparse. Across all network sizes in both contexts, principal VA models benefit

from large sample sizes, since all of the tested students in a school will contribute to es-

timating the principal’s effect. Larger networks tend to be weakly connected, however,

which will lead to non-trivial variance inflation in the VA estimates. In Tennessee’s

two large networks, for instance, the mean predicted variance inflation is 0.027, which

is scaled in terms of the error variance of student test score growth.

To make more concrete the concept of network connectivity, Figure 1 shows two

examples of medium-sized principal networks in Tennessee. In each plot, the numbered

nodes represent principals, with edges representing comparisons among principals who

worked in the same school. As an example, the left part of plot A shows that principals

2, 3, and 11 worked in the same school and can be directly compared. Principal 3

also worked in a (different) school with principals 7 and 16. This allows for indirect

comparisons between principals in these subsets. As more principals switch schools (as

opposed to leaving the principalship altogether), networks will grow larger and more

indirect comparisons will become possible.

While the networks in plots A and B are similar in the number of principals and

schools, their connectivity (summarized by λ2, the smallest non-zero eigenvalue) differs.
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Intuitively, a network is weakly connected when it is easy to separate it into two

substantial sub-networks by removing edges. This is the case for plot A, where there

are fairly few edges linking the two sides, and these centralized edges have relatively

low weights (denoted in the plot by the edge width). In plot B, there are far more

edges, which represents greater mobility among schools. There are also redundancies

such that the network cannot be split into two sub-networks by removing a single

principal. As a result, variance inflation in the network shown in plot A is predicted

to be roughly four times greater than in the network shown in plot B.

Overall, Tables 2 shows that the precision of VA estimates is very high for principals

in small or medium-sized networks in Tennessee and NYC. Of course, the trade-off is

that these VA estimates are highly localized measures of performance—the majority

of principals can only be compared to other principals who worked in the same school.

While there are a few large networks that, in theory, produce a more globalized measure

of performance, the underlying network structure is extremely weak, leading to VA

estimates that contain considerable estimation error.

4 Results

Figures 2 and 3 show results for the four summary measures across simulations in Ten-

nessee and NYC, respectively. For the sake of parsimony, we only report the simulation

results where school performance accounts for 5% of the total variance in student test

score growth, with the full results available in Appendix B. In each panel, the perfor-

mance measure (averaged across the 10 iterations) for each model specification (defined

by the legend at the bottom) is shown by the size of the principal–school match (top

x-axis) and the correlation between the fixed principal and school effects (bottom x-

axis).

Panel A shows that the accuracy of principal VA estimates varies substantially

according to both model specification and the magnitude of the principal–school match

effect. We begin with the “no match” scenario—the ideal scenario for the connected
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networks approach where systematic deviations in school performance are completely

determined by the fixed principal effect. Here, the P+S, P-D+S, and P-S+S models

all perform relatively well, producing correlations with true principal effects that are

above 0.7 in Tennessee and just under 0.9 in NYC. P-S+S, however, is always the

most accurate, though it faces the limitation that VA estimates are highly localized—

principals can only be compared to others who worked in the same school. In NYC, the

difference between the P+S and P-S+S models is smaller. Because the vast majority

principals are already in small networks, limiting to single-school networks has less of

an impact on the results relative to Tennessee.

Given that the inclusion of school FE in principal VA models creates challenges—

either in the form of noisy estimates or limited comparison sets—a clear question is

whether to omit school FE entirely. The results in Figures 2 and 3 demonstrate,

however, that if there is a fixed school contribution to test score growth, the exclusion

of school FE (PO model) can lead to wildly inaccurate VA estimates. This model

is particularly inaccurate when the true principal and school effects are negatively

correlated.

The sensitivity of the estimates to the inclusion of school FE is due to the fact

that most principals are observed in only a single school. Any omitted school effect

will be incorrectly attributed to the principal, producing an inaccurate estimate even if

there is no absolute sorting of principals to schools (i.e., where the correlation between

the fixed principal and school effect is zero). In essence, the issue is one of omitted

variables bias. The connected networks model is, effectively, a model with two large

sets of indicator variables that are highly correlated with one another. Omitting the

school indicators creates bias in each of the principal indicators, which grows in size

with the magnitude of school effects.

Concerning our second research question, Panel B of Figure 2 shows that the SD

of the distribution of principal VA estimates often does not correspond to the true

SD of principal effects. As with panel A, the results vary both by model and the

size of the principal–school match. For the P+S approach, the SD of principal VA
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consistently overstates the magnitude of principal effects, with greater bias when the

principal–school match effect is larger. By contrast, the P-S+S model understates

the importance of principals. As we outlined earlier, there are two sources of bias in

the estimated magnitude. First, VA estimates from large networks contain substan-

tial estimation error, leading to variance inflation that is evident in the P+S results.

Second, VA estimates from small networks understate principal effects because the

school fixed effect captures variation in true principal quality. In New York City, the

dynamic is again slightly different because of the large number of principals in small

networks. Here, both P+S and P-S+S understate the magnitude of principal effects,

as the downward bias from small networks outweighs the upward bias from estimation

error in large networks.

Panels C and D of Figures 2 and 3 help demonstrate why the P+S and P-D+S

models are less accurate than the P-S+S model. Panel C shows the results of regressing

the principal VA estimates on the true principal effects. In models with school FE,

the estimated coefficient is roughly 0.9, with a small amount of bias introduced by

controlling for the prior-year test score in models with principal and school effects.

Panel D, however, shows that the P+S model contains substantially greater estimation

error. This noise component contains no information about principal effectiveness

and thus lowers the accuracy of the P+S model. As expected, the P-D+S model in

Tennessee is bounded between the P+S and P-S+S models, as it partially restricts

network sizes, though not to the extent of the P-S+S model.

We next consider the accuracy of principal VA in the presence of principal–school

complementarities. Figures 2 and 3 show that even a small match effect undermines the

correlation with the true principal effects. By contrast, match effects have negligible

(PO) or no (P-S+S) influence on the other models. This inaccuracy is a product

of additional noise in the principal effect estimates rather than a systematic bias.

Because the P+S model relies on mobile principals to identify the school effects, the

addition of a principal-school match effect makes this source of variation inherently

unreliable. Put another way, using the performance of principal A in two different
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schools to make indirect comparisons among other principals is problematic if principal

A’s true performance varies in these two schools, particularly if principal A is the only

connection between the schools. In short, principal–school complementarities amplify

the existing weakness of the connected networks approach for estimating principal

effects.

The P-S+S and PO models, which do not rely on this form of mobility for identifi-

cation, are relatively unaffected by the existence of match effects. The P-S+S model,

by definition, includes any match effects because it produces a separate estimate for

each principal-school combination. The PO model will simply provide an estimate of

the weighted average of principal effectiveness (i.e., the portable component and match

effect) across the schools in which a principal worked.

To reinforce the importance of network structure, we next compute our performance

measures for the P+S model according to network size: single (1 school), small (2–5

schools), medium (6–15 schools), and large (16+ schools). Given the similar patterns

for Tennessee and NYC and the limited variation in network size in NYC, we focus our

discussion on the Tennessee results.9 Consistent with the network structure analysis

in Table 2, Figure 4 shows that the estimation error in the P+S model is driven by

larger networks. Specifically, Panel A shows that the correlation between estimated

and true principal effects from large networks are much lower than those from smaller

networks. In the “no match” scenario, correlations from small networks are roughly

0.9, while those from large networks are roughly 0.6.

Panels C and D show that this difference in accuracy between larger and smaller

networks is completely driven by variance inflation. While there are no substantive

differences in the bias measure in panel C, the ratio of standard deviations in panel D

are substantially greater for large networks. In the “no match” scenario in panel D, for

example, the estimated SD of principal VA for single or small networks is approximately

equal to the true within-network SD of principal effects, while the estimated SD for

large networks is roughly 1.6 times larger than the true SD.

9. The NYC results are shown in Appendix Figure A.1.
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The results in Figure 4 demonstrate a key tradeoff in the connected networks ap-

proach. As the size of the connected networks grows, principal VA estimates become

less localized, which increases their usefulness as a measure of principal effectiveness.

At the same time, the reliability of the VA estimates decreases due to weak network

structure. Thus, the ability to link an increasing number of principals is not unambigu-

ously beneficial even if the underlying assumptions of the principal and school fixed

effects model are met.

4.1 Shrinkage Estimators

The previous section demonstrates that FE estimates of principal quality from con-

nected networks models contain substantial estimation error in large networks, which

leads to low correlations with the true principal effects and inflated estimates of the

magnitude of principal effects. These inaccuracies are further magnified in the presence

of principal–school complementarities.

One way to potentially reduce the variability of principal VA estimates is to im-

plement a shrinkage estimator, such as Empirical Bayes’s (EB), that adjusts for the

estimation error in the principal FE. The intuition of the EB approach, in this case,

is that principals with very high (low) VA estimates are likely suffering from positive

(negative) estimation error. EB estimation accordingly shrinks these estimates toward

the mean principal effect, yielding a biased but less noisy VA estimate. In theory, the

shrunken estimates should have a higher correlation with the true principal effects.

We implement the EB approach in two ways. The first is to make a post hoc

adjustment to the estimated FE by drawing on their standard errors as a measure

estimation error, according to the following formula:

δ̂EBj = λj δ̂
FE
j + (1− λj)δ̄ (6)

The FE estimate δ̂FEj is shrunken towards the mean principal effect (δ̄ = 0) by the

factor 1−λj = 1− σ̂2
δ

σ̂2
δ+ζ̂j

. This shrinkage factor is a function of the estimated variance
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of principal effects (σ̂2
δ ) and the estimated error variance of principal j’s effect. The

latter quantity is simply the squared standard error of the FE estimate for principal j,

while the former is approximated by the mean of the square of the standard errors of δ̂j

subtracted from the variance of δ̂j (e.g., Aaronson, Barrow, and Sander 2007; Branch,

Hanushek, and Rivkin 2012).10 Intuitively, as error in a principal’s FE estimate (ζ̂j)

increases relative to the variance of principal effects (σ̂2
δ ), the shrinkage factor (1− λj)

increases, pulling the EB estimates towards zero.

Our second approach to implement EB is to estimate a mixed model where princi-

pal and school are random effects instead of fixed effects. From this model we obtain

the best linear unbiased predictions (BLUPs) for the principal effects. To ease compu-

tational demands, we limit our shrinkage exercise to the largest connected network in

Tennessee, which contains 568 principals and 228 schools. This network also has the

largest amount of variance inflation, making it a useful test case for the EB approach.

We focus on the DGP where the correlation between the fixed principal and school ef-

fects are zero, conducting 50 iterations across each of parameters for the magnitude of

the principal–school match effect, using the same performance measures as the baseline

simulation.

Figure 5 shows the simulation results for the FE and two EB approaches. Panel A

shows that the mixed model substantially improves upon the estimates from the P+S

model, while the shrunken FE approach does not. For example, the P+S estimates

in the “no match” scenario are correlated with the true principal effects at only 0.52,

which increases to 0.54 using shrunken FE but to 0.85 for the BLUPs from the mixed

model. In the P-S+S and PO models, there is virtually no difference between the FE

estimates and either of the shrunken estimates. As shown in panel B, the mixed model

also produces a remarkably accurate estimate of the magnitude of principal effects,

even in the presence of a large principal–school match component. By contrast, the

shrunken FE still overstates the SD of principal effects, particularly when match effects

10. We obtain the standard errors for the FE using the routine proposed by Mihaly et al. (2010), which
accounts for the sum-to-zero constraints within connected networks.

25



exist.

The differences between the two shrinkage approaches stem from the fact that, in

the shrunken FE model, the school effects are included as covariates and are estimated

via the FE estimator versus the random effects (RE) estimator. While FE produces

consistent estimates of the school effects, these estimates are plagued by the same

estimation error as the principal effects. In essence, the shrunken FE approach does

little to address the root cause of the estimation error, which is the collinearity of

principal and school assignment. The RE model, which assumes (incorrectly) that

principal and school assignments are uncorrelated, produces biased, yet substantially

more precise, estimates of the principal and school effects. The net result is that

the bias/variance tradeoff is squarely in favor of the RE approach when the source of

estimation error is the collinearity of the principal and school effects (i.e., the P+S

model). In the P-S+S case, however, there is little estimation error because of the

constrained network sizes. Here (and with PO), the two shrinkage approaches are more

or less identical. With the large number of students contributing to each principal’s

estimated effect, the FE and shrinkage estimates are very similar.

Panels C and D demonstrate the bias/variance tradeoff more clearly. In the P+S

model, both shrinkage procedures reduce estimation error, which yields a SD of prin-

cipal VA close to the true SD of principal effects. This shrinkage, however, results in

biased estimates, whereby differences in shrunken VA understate the true differences

in principal effectiveness. In the case of shrunken FE, the gain in precision is almost

perfectly offset by the bias, while the bias in the mixed model is much smaller. In the

P-S+S and PO models, the FE estimates are already very precise, such that there is

little to be gained through shrinkage.

4.2 Empirical Application

As a final supplement to our simulation results, we provide a brief demonstration using

principal VA estimates from actual student test scores. Specifically, we estimate the

P+S, P-S+S, and mixed models, with the distribution of VA estimates summarized in
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Table 3.11 In addition to the full sample, we show the SD of the estimates for principals

by network size. We again focus on the Tennessee results, with the New York City

results shown in Appendix Table A.1.

As our simulation results would suggest, the SD of the P+S model estimates for

actual math and reading VA increases substantially with network size, reflecting the

variance inflation due to sparse network structure. For instance, the SD of math VA

in single-school networks is 0.09, meaning that a 1 SD increase in principal VA raises

math test scores by 0.09 student-level SD, on average. In large networks, this SD

increases to 0.32. Turning to the mixed and P-S+S models, which should contain

little to no estimation error, we observe that the estimated magnitude of principal

VA does increase in larger networks, but by substantially less than would be implied

by the P+S results. The mixed model—which in our simulations provides the most

accurate estimates of the magnitude of principal VA—suggests that the true SD in large

networks is 0.14 for math and 0.06 for reading. As previously noted in our simulation

results, the within-network SD of principal VA in small networks will understate the

true SD of principal quality, as the school FE sweeps out real differences in average

principal quality between schools.

In an effort to examine the accuracy of principal VA across these specifications, we

compare VA to alternative measures of principal performance. In Tennessee, princi-

pals beginning in 2011–12 receive rubric-based ratings from their supervisors as part of

the state’s high-stakes educator accountability system, where the average score com-

prises 50% of a principal’s summative evaluation rating. Prior work has documented

positive, though weak, relationships between supervisor ratings and principal VA (Bar-

tanen 2020; Grissom, Blissett, and Mitani 2018). We hypothesize, however, that these

correlations may be somewhat attenuated due to estimation error in the principal VA

11. In the control vector, we include a broader set of student and school characteristics to align with
common principal VA specifications. Specifically, we control for cubics of prior-year test scores in math
and reading, prior-year attendance rate, student demographic characteristics (race/ethnicity, gender, eco-
nomically disadvantaged, English learner, gifted classification, special education classification, and grade
repetition), and school-by-year averages of these demographics.
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estimates.12

Figure 6 shows binned scatterplots for predicting a principal’s mean supervisor

rating as a function of their math or reading VA estimate across model specifications.

We additionally control for the relevant network fixed effects to maintain the within-

network interpretation of the VA estimates. The left plots show how large estimation

error attenuates the correlation between P+S VA estimates and supervisor ratings.

While there is an apparent upward slope when restricting to principals in the middle

of the distribution, the high-leverage observations at the tails (i.e., principals with very

high or low VA estimates) flatten the estimated regression line. That principals at

the extremes of the VA distribution have supervisor ratings close to the mean further

suggests that their VA estimate is suffering from positive or negative estimation error.

Estimation error can be reduced through a shrinkage approach (i.e., the mixed

model) or by limiting the size of connected networks (i.e., the P-S+S model). In both

approaches, the distribution of VA is compressed and the estimated correlations with

supervisor ratings increase. This provides empirical support for the simulation results,

which show that estimates from the mixed model or P-S+S model will produce more

accurate rankings of principals’ true effects. Finally, Appendix Figure A.2 shows results

from an equivalent exercise that predicts residualized student test scores in one subject

as a function of principal VA in the other subject (e.g., predicting math scores using a

principal’s reading VA).

5 Conclusion

There is a growing interest in using value-added models to estimate principals’ con-

tributions to student outcomes. Accurately isolating principal effectiveness requires

accounting for school-level factors that affect student achievement but are not con-

trolled by principals. The common approach to address this issue is to estimate a

12. While principals receive an average observation score each year, we construct a time-invariant measure
that averages across all available years. When comparing to the principal-by-school VA estimates, we limit
to observation scores that were received in that same school.
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“connected networks” model with principal and school fixed effects. The accuracy of

this model, however, has not been rigorously tested. Specifically, the inclusion of school

FE—while conceptually important for mitigating bias—creates challenges with respect

to the reliability of principal VA estimates.

Using simulated test scores applied to the actual principal–school assignments

across long panels from Tennessee and New York City, we reach several important find-

ings. First, limited mobility of principals combined with high rates of attrition makes

the connected networks model difficult to implement. There is insufficient variation

to jointly identify both principal and school effects, such that principal VA estimates

are either highly localized—reflecting performance relative to only a handful of other

principals—or very imprecise. In both Tennessee and New York City, the modal prin-

cipal is in a single-school connected network. While estimates from small networks

are reliable, they are less useful from a practical perspective and they understate the

magnitude of principals’ effects. On the other hand, VA estimates from large networks

reflect a principal’s performance relative to a much larger group, but the underlying

network structure is weak. As a result, VA estimates from large networks are unreli-

able and their variance overstates the magnitude of principals’ effects. The precision

of VA estimates in large connected networks can be improved by employing a shrink-

age estimator, though our simulation results suggest that a mixed model performs

substantially better than a post-hoc shrinkage of the principal fixed effects.

Our results help to inform the estimation of principal VA. Those implementing

principal VA models should consider the intended use of the estimates when choosing

the most appropriate specification. For most applications, models with principal ran-

dom effects and school FE are the best available option. This is particularly true when

the magnitude of principal effects is the main parameter of interest. While, models

with principal-by-school and school FE produce VA estimates with stronger internal

validity and higher reliability, they understate the importance of principal quality and

the measures are highly localized. The inability to compare principals across schools,

in particular, makes this model unfavorable for accountability purposes. A final al-

29



ternative is to omit school FE entirely from the model. While this alleviates variance

inflation and small network issues, it comes with a risk of substantial bias in the VA

estimates, as any unobserved school-level factors that are not completely captured by

observable school characteristics will be mistakenly attributed to principals.

Given our results, a clear question is whether principal VA can really provide use-

ful information about principal effectiveness. Certainly, the multi-faceted and indirect

nature of principals’ contributions to student outcomes makes estimating principal ef-

fects a formidable challenge. We stress, however, that even imperfect principal VA

models may contain valuable information that is not captured by alternative measures.

A clear strength of the principal effects literature, for instance, is the ability to avoid

penalizing principals who work in the most challenging schools. This is particularly

important given evidence that rubric-based ratings of principal practice and school

value-added—two commonly used alternative measures of principal performance—in

part hold principals accountable for factors they cannot control (Chiang, Lipscomb, and

Gill 2016; Grissom, Kalogrides, and Loeb 2015; Grissom, Blissett, and Mitani 2018).

As a final caution, we note that our simulation analysis makes a number of assumptions

about the nature of principal effects on student outcomes. These assumptions—most

notably, that new principals can immediately change school performance and their

effects are fixed over time—are helpful for isolating issues related to the connected net-

works approach, but may not hold in practice. While this study is an additional step in

understanding the extent to which principal VA models can provide accurate estimates

of principals’ effects, there is a continued need for work that rigorously examines their

validity and reliability.
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(b) Stronger Connected Network (λ2 = 0.114, Variance Inflation = 0.005)

Figure 1: Examples of Connected Networks of Principals

Notes: Each plot shows a single connected network of principals from Tennessee. Nodes represent principals and edges are
formed by principals who worked in the same school. In panel A, there are 20 principals across 6 schools. In panel B, there
are 17 principals across 6 schools. The weight (shown visually by width) of the edge is determined by the harmonic mean of
the number of students that contribute to estimating each principal’s effect in the relevant school. Both connectivity (λ2) and
variance inflation are calculated following the approach of Jochmans and Weidner (2019). λ2 is the smallest non-zero eigenvalue
from the normalized Laplacian matrix that corresponds to each connected graph of principals. A smaller eigenvalue indicates
that principals in a network are more weakly connected. Variance inflation is expressed in terms of the error variance of student
test score growth.
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Figure 2: Baseline Simulation Results (Tennessee)

Notes: In each plot, the y-axis is defined by the header. The bottom x-axis corresponds to the correlation between principal
quality and the fixed school effect (-0.4, 0, 0.4). The top y-axis corresponds to the magnitude of the principal–school match
effect (0%, 22%, 56% of the total principal effect). In the results shown here, the school performance effect constitutes 5% of
the total variance in student test score growth. The full set of simulation results are shown in Appendix B. In Panels A, B,
and C, the true principal effects are residualized on network fixed effects corresponding to the connected networks formed by
principals and schools for the given VA measure.
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Figure 3: Baseline Simulation Results (New York City)

Notes: In each plot, the y-axis is defined by the header. The bottom x-axis corresponds to the correlation between principal
quality and the fixed school effect (-0.4, 0, 0.4). The top y-axis corresponds to the magnitude of the principal–school match
effect (0%, 22%, 56% of the total principal effect). In the results shown here, the school performance effect constitutes 5% of
the total variance in student test score growth. The full set of simulation results are shown in Appendix B. In Panels A, B,
and C, the true principal effects are residualized on network fixed effects corresponding to the connected networks formed by
principals and schools for the given VA measure.

36



0.2

0.4

0.6

0.8

1.0

No
Match

Small
Match

Large
Match

- 0 + - 0 + - 0 +

(a) Correlation between Estimated
and True Principal Effect

0.5

1.0

1.5

2.0

2.5

No
Match

Small
Match

Large
Match

- 0 + - 0 + - 0 +

(b) Ratio of Estimated SD to True SD
of Principal Effects

0.6

0.8

1.0

1.2

1.4

No
Match

Small
Match

Large
Match

- 0 + - 0 + - 0 +

(c) Bias Measure
 

0.5

1.0

1.5

2.0

2.5

No
Match

Small
Match

Large
Match

- 0 + - 0 + - 0 +

(d) Ratio of Estimated SD to True
Network SD of Principal Effects

Correlation between School and Principal Effect

Single (1) Small (2-5) Medium (6-15) Large (16+)
Network Size (Number of Schools)

Figure 4: Principal FE + School FE Results by Network Size (Tennessee)

Notes: Results shown are only for the principal and school FE model in Tennessee. The legend defines the size of the connected
network. In each plot, the y-axis is defined by the header. The bottom x-axis corresponds to the correlation between principal
quality and the fixed school effect (-0.4, 0, 0.4). The top y-axis corresponds to the magnitude of the principal–school match
effect (0%, 22%, 56% of the total principal effect). In the results shown here, the school performance effect constitutes 5% of
the total variance in student test score growth. In Panels A, B, and C, the true principal effects are residualized on network
fixed effects corresponding to the connected networks formed by principals and schools for the given VA measure.
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Figure 5: Comparison of Shrinkage Estimators

Notes: Shrinkage analysis only performed for principals in the largest connected network in Tennessee. In each plot, the y-axis
is defined by the header. The top y-axis corresponds to the magnitude of the principal–school match effect (0%, 22%, 56%
of the total principal effect). Additional horizontal spacing is to facilitate visual comparisons between models. In the results
shown here, the school performance effect constitutes 5% of the total variance in student test score growth. In Panels A, B,
and C, the true principal effects are residualized on network fixed effects corresponding to the connected networks formed by
principals and schools for the given VA measure.
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Figure 6: Relationship Between Principal VA Estimates and Supervisor Ratings in
Tennessee

Notes: Each plot shows a binned scatterplot predicting supervisor ratings as a function of the principal VA estimate shown in
the plot header, along with the OLS line. Models include fixed effects for the connected network corresponding to the principal
VA estimate. The red line is estimated via OLS using the underlying data. Starting from the left, the standardized regression
coefficient for the slope is (top row) 0.059, 0.105, 0.158; (bottom row) 0.031, 0.109, 0.116.
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Table 1: Simulation Parameters

Panel A: Data-Generating Process

Aijst = λAijs,t−1 + θjst + ci + eijst, where
θjst = δj(t,s) + αjs(t,s) + γs + vjst

Panel B: Parameters that are Fixed Across Simulations

λ (persistence) 0.5
Aijs,t−n (base score) Normal(0, 1)
ci (fixed student effect) Normal(0, 0.5)
eijst (random deviation) Normal(0, 1)
Corr(Aijs,t−n, ci) 0.5

Panel C: Parameters that Vary Across Simulations

School Performance Effect
(θjst) % of Total Variance

Component Shares of
School Performance Effect

Corr(δj, γs)

δj αjs γs vjst

5% 0.45 0.00 0.45 0.10 -0.4
10% 0.35 0.10 0.45 0.10 0

0.20 0.25 0.45 0.10 0.4
Notes: This table summarizes the simulation parameters used to test the accuracy of principal value-added models. Panel A
shows the data-generation process for student test scores. Panel B shows the parameters that are the same for every simulation.
The base score (Aijs,t−n) is drawn for each student’s first observed year in the dataset, since there is no prior-year score. Panel
C shows the parameters we vary across simulations. The component shares show the weight each component receives in the
equation to produce the school performance effect, shown in the second line of Panel A.
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Table 2: Network Statistics for Tennessee and New York Principals

Network Size (# of Schools)

Single
(1)

Small
(2–5)

Medium
(6–15)

Large
(16+)

No
Network

Panel A: Tennessee
Number of Networks 564 174 22 2
Mean Schools per Network 1 2.6 8.3 142.5
Mean Principals per Network 2.5 5.8 20.5 353
Number of Principals 1435 1003 450 706 243
Percentage of Total Principals 37.4 26.2 11.7 18.4 6.3
Mean Student Obs per Prin 1267 1457 1379 1470 2069
Connectivity (λ2) 1.6664 0.6148 0.0438 0.0014
Variance Inflation 0.002 0.004 0.007 0.027

Panel B: New York City
Number of Networks 695 117 12 2
Mean Schools per Network 1 2.5 7.8 23
Mean Principals per Network 2.8 6.5 19.6 56
Number of Principals 1958 755 235 112 214
Percentage of Total Principals 59.8 23.1 7.2 3.4 6.5
Mean Student Obs per Prin 2837 2582 2330 2254 2362
Connectivity (λ2) 1.5401 0.5050 0.0402 0.0051
Variance Inflation 0.002 0.003 0.005 0.009

Notes: Both connectivity (λ2) and variance inflation are calculated following the approach of Jochmans and Weidner (2019). λ2
is the smallest non-zero eigenvalue from the normalized Laplacian matrix that corresponds to each connected graph of principals.
A smaller eigenvalue indicates that principals in a network are more weakly connected. Variance inflation is expressed in terms
of the error variance of student test score growth. Principals without a network are those who were the only principal in their
school across the study period.
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Table 3: Standard Deviation of Empirical Principal VA Estimates in Tennessee

Network Size (# of Schools)

All Single
(1)

Small
(2–5)

Medium
(6–15)

Large
(16+)

Math
Principal FE + School FE 0.201 0.094 0.152 0.259 0.323
Mixed Model 0.120 0.086 0.120 0.146 0.143
Principal-School FE + School FE 0.107 0.093 0.109 0.116 0.125
Reading
Principal FE + School FE 0.127 0.054 0.083 0.195 0.203
Mixed Model 0.053 0.041 0.054 0.061 0.063
Principal-School FE + School FE 0.065 0.054 0.061 0.084 0.082

Notes: Table shows the standard deviation of principal VA estimates using actual student test scores. For the mixed model,
the VA estimates are the best linear unbiased predictions (BLUPs) from a model with school fixed effects and principal random
effects. The model-based estimate of the SD of the principal random effect is 0.140 in math and 0.067 in reading. The BLUPs
are less variable due to shrinkage.
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Figure A.1: Principal FE + School FE Results by Network Size (New York City)

Notes: Results shown are only for the principal and school FE model in New York City. The legend defines the size of the
connected network. In each plot, the y-axis is defined by the header. The bottom x-axis corresponds to the correlation between
principal quality and the fixed school effect (-0.4, 0, 0.4). The top y-axis corresponds to the magnitude of the principal–school
match effect (0%, 22%, 56% of the total principal effect). In the results shown here, the school performance effect constitutes
5% of the total variance in student test score growth. In Panels A, B, and C, the true principal effects are residualized on
network fixed effects corresponding to the connected networks formed by principals and schools for the given VA measure.
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Figure A.2: Relationship Between Principal VA Estimates and Opposite-Subject Test
Scores

Notes: Each plot shows a binned scatterplot predicting student test scores in the opposite subject as a function of the principal
VA estimate for the subject shown in the plot header, along with the OLS line. Models include controls for students’ prior-year
test scores, demographic characteristics, school-by-year averages of these characteristics, fixed effects for the connected network
corresponding to the principal VA estimate.
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Table A.1: Standard Deviation of Empirical Principal VA Estimates in New York City

Network Size (# of Schools)

All Single
(1)

Small
(2–5)

Medium
(6–15)

Large
(16+)

Math
Principal FE + School FE 0.070 0.044 0.088 0.144 0.146
Mixed Model 0.059 0.052 0.071 0.075 0.090
Principal-School FE + School FE 0.048 0.044 0.056 0.052 0.064
Reading
Principal FE + School FE 0.051 0.033 0.065 0.098 0.143
Mixed Model 0.040 0.037 0.046 0.043 0.047
Principal-School FE + School FE 0.035 0.033 0.039 0.037 0.041

Notes: Table shows the standard deviation of principal VA estimates using actual student test scores. For the mixed model,
the VA estimates are the best linear unbiased predictions (BLUPs) from a model with school fixed effects and principal random
effects. The model-based estimate of the SD of the principal random effect is 0.082 in math and 0.057 in reading. The BLUPs
are less variable due to shrinkage.
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B Full Simulation Results

Table B.1: Tennessee, School Performance is 5% of Total Variance

θjst is 5% of Total Variance Corr,
True

Prin and
Sch Eff

Corr,
Est and

True
Prin Eff

Bias SD
Ratio

SD
Ratio

Within
Net

Corr,
Est Prin
and Sch

Eff

No Match Effect

Principal FE + School FE -0.4 0.76 0.93 1.10 1.23 -0.47

0.0 0.74 0.92 1.12 1.26 -0.34

0.4 0.73 0.92 1.12 1.26 -0.22

Principal-School FE + School FE -0.4 0.92 0.93 0.83 1.02 -0.00

0.0 0.90 0.92 0.84 1.03 0.00

0.4 0.88 0.92 0.86 1.05 0.00

Principal-District FE + School FE -0.4 0.87 0.93 0.94 1.08 -0.26

0.0 0.83 0.92 0.97 1.11 -0.15

0.4 0.81 0.92 0.99 1.14 -0.09

Principal FE Only -0.4 0.58 0.60 1.03 1.03 .

0.0 0.70 0.87 1.25 1.25 .

0.4 0.83 1.19 1.44 1.44 .

Small Match Effect

Principal FE + School FE -0.4 0.67 0.92 1.21 1.38 -0.57

0.0 0.64 0.91 1.25 1.42 -0.48

0.4 0.62 0.91 1.31 1.49 -0.43

Principal-School FE + School FE -0.4 0.92 0.93 0.83 1.02 -0.00

0.0 0.90 0.93 0.84 1.03 0.00

0.4 0.88 0.92 0.85 1.04 0.00

Principal-District FE + School FE -0.4 0.78 0.92 1.02 1.18 -0.38

0.0 0.77 0.92 1.03 1.19 -0.26

0.4 0.75 0.91 1.05 1.21 -0.19

Principal FE Only -0.4 0.60 0.63 1.04 1.05 .

0.0 0.70 0.88 1.25 1.26 .

0.4 0.81 1.15 1.41 1.42 .

Large Match Effect

Principal FE + School FE -0.4 0.56 0.92 1.46 1.68 -0.67

0.0 0.56 0.91 1.42 1.64 -0.59

0.4 0.55 0.91 1.45 1.68 -0.55

Principal-School FE + School FE -0.4 0.91 0.93 0.84 1.02 -0.00

0.0 0.90 0.93 0.84 1.03 -0.00

0.4 0.89 0.93 0.85 1.04 -0.00

Principal-District FE + School FE -0.4 0.71 0.92 1.11 1.30 -0.45

0.0 0.71 0.91 1.10 1.29 -0.36

0.4 0.69 0.91 1.12 1.32 -0.31

Principal FE Only -0.4 0.62 0.69 1.09 1.11 .

0.0 0.70 0.89 1.24 1.26 .

0.4 0.79 1.10 1.36 1.39 .
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Table B.2: Tennessee, School Performance is 10% of Total Variance

θjst is 10% of Total Variance Corr,
True

Prin and
Sch Eff

Corr,
Est and

True
Prin Eff

Bias SD
Ratio

SD
Ratio

Within
Net

Corr,
Est Prin
and Sch

Eff

No Match Effect

Principal FE + School FE -0.4 0.82 0.94 1.02 1.15 -0.39

0.0 0.79 0.93 1.05 1.19 -0.26

0.4 0.77 0.94 1.08 1.22 -0.20

Principal-School FE + School FE -0.4 0.93 0.94 0.82 1.01 0.00

0.0 0.92 0.93 0.83 1.02 0.00

0.4 0.91 0.94 0.84 1.03 0.00

Principal-District FE + School FE -0.4 0.88 0.93 0.93 1.06 -0.25

0.0 0.87 0.94 0.94 1.08 -0.12

0.4 0.85 0.94 0.96 1.11 -0.07

Principal FE Only -0.4 0.59 0.60 1.02 1.02 .

0.0 0.71 0.90 1.25 1.25 .

0.4 0.84 1.20 1.43 1.43 .

Small Match Effect

Principal FE + School FE -0.4 0.68 0.94 1.22 1.39 -0.56

0.0 0.67 0.93 1.22 1.39 -0.44

0.4 0.67 0.94 1.23 1.40 -0.37

Principal-School FE + School FE -0.4 0.93 0.94 0.83 1.01 0.00

0.0 0.92 0.93 0.83 1.02 0.00

0.4 0.91 0.93 0.84 1.02 0.00

Principal-District FE + School FE -0.4 0.80 0.93 1.01 1.16 -0.36

0.0 0.81 0.93 1.01 1.16 -0.23

0.4 0.79 0.93 1.02 1.18 -0.17

Principal FE Only -0.4 0.60 0.63 1.05 1.06 .

0.0 0.71 0.89 1.24 1.25 .

0.4 0.83 1.16 1.39 1.41 .

Large Match Effect

Principal FE + School FE -0.4 0.57 0.91 1.40 1.62 -0.66

0.0 0.57 0.92 1.41 1.63 -0.60

0.4 0.58 0.92 1.38 1.59 -0.51

Principal-School FE + School FE -0.4 0.92 0.94 0.83 1.01 -0.00

0.0 0.92 0.93 0.83 1.01 -0.00

0.4 0.91 0.93 0.83 1.02 0.00

Principal-District FE + School FE -0.4 0.72 0.92 1.10 1.28 -0.45

0.0 0.72 0.92 1.09 1.27 -0.36

0.4 0.71 0.91 1.10 1.28 -0.30

Principal FE Only -0.4 0.62 0.69 1.08 1.10 .

0.0 0.71 0.88 1.22 1.24 .

0.4 0.80 1.10 1.36 1.38 .
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Table B.3: New York City, School Performance is 5% of Total Variance

θjst is 5% of Total Variance Corr,
True

Prin and
Sch Eff

Corr,
Est and

True
Prin Eff

Bias SD
Ratio

SD
Ratio

Within
Net

Corr,
Est Prin
and Sch

Eff

No Match Effect

Principal FE + School FE -0.4 0.90 0.91 0.87 1.01 -0.20

0.0 0.88 0.91 0.89 1.04 -0.10

0.4 0.87 0.90 0.89 1.04 -0.04

Principal-School FE + School FE -0.4 0.94 0.92 0.80 0.97 0.00

0.0 0.93 0.91 0.81 0.98 -0.00

0.4 0.92 0.90 0.81 0.99 -0.00

Principal FE Only -0.4 0.56 0.57 1.01 1.01 .

0.0 0.70 0.88 1.26 1.26 .

0.4 0.83 1.21 1.46 1.46 .

Small Match Effect

Principal FE + School FE -0.4 0.85 0.91 0.91 1.07 -0.26

0.0 0.84 0.91 0.93 1.09 -0.17

0.4 0.81 0.90 0.94 1.11 -0.13

Principal-School FE + School FE -0.4 0.94 0.92 0.80 0.98 0.00

0.0 0.93 0.91 0.81 0.98 0.00

0.4 0.92 0.91 0.81 0.99 0.00

Principal FE Only -0.4 0.59 0.62 1.04 1.05 .

0.0 0.70 0.88 1.26 1.27 .

0.4 0.82 1.18 1.43 1.44 .

Large Match Effect

Principal FE + School FE -0.4 0.80 0.90 0.95 1.13 -0.32

0.0 0.78 0.90 0.97 1.15 -0.25

0.4 0.76 0.90 1.01 1.19 -0.23

Principal-School FE + School FE -0.4 0.94 0.91 0.80 0.97 0.00

0.0 0.93 0.91 0.80 0.98 0.00

0.4 0.92 0.91 0.81 0.99 -0.00

Principal FE Only -0.4 0.61 0.67 1.09 1.10 .

0.0 0.70 0.88 1.26 1.27 .

0.4 0.79 1.11 1.38 1.39 .
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Table B.4: New York City, School Performance is 10% of Total Variance

θjst is 10% of Total Variance Corr,
True

Prin and
Sch Eff

Corr,
Est and

True
Prin Eff

Bias SD
Ratio

SD
Ratio

Within
Net

Corr,
Est Prin
and Sch

Eff

No Match Effect

Principal FE + School FE -0.4 0.91 0.91 0.86 1.00 -0.19

0.0 0.91 0.91 0.86 1.00 -0.08

0.4 0.89 0.91 0.87 1.02 -0.02

Principal-School FE + School FE -0.4 0.95 0.92 0.79 0.97 -0.00

0.0 0.94 0.91 0.79 0.97 0.00

0.4 0.93 0.91 0.79 0.97 0.00

Principal FE Only -0.4 0.57 0.58 1.00 1.00 .

0.0 0.71 0.89 1.26 1.26 .

0.4 0.84 1.23 1.46 1.46 .

Small Match Effect

Principal FE + School FE -0.4 0.86 0.92 0.91 1.07 -0.27

0.0 0.85 0.92 0.92 1.08 -0.17

0.4 0.84 0.90 0.92 1.07 -0.11

Principal-School FE + School FE -0.4 0.94 0.92 0.80 0.97 0.00

0.0 0.94 0.92 0.79 0.97 0.00

0.4 0.93 0.91 0.80 0.97 0.00

Principal FE Only -0.4 0.59 0.62 1.04 1.05 .

0.0 0.70 0.89 1.26 1.26 .

0.4 0.82 1.18 1.43 1.44 .

Large Match Effect

Principal FE + School FE -0.4 0.79 0.91 0.97 1.15 -0.33

0.0 0.79 0.90 0.96 1.14 -0.24

0.4 0.79 0.91 0.98 1.16 -0.21

Principal-School FE + School FE -0.4 0.94 0.92 0.80 0.97 -0.00

0.0 0.94 0.91 0.80 0.97 -0.00

0.4 0.94 0.91 0.80 0.97 0.00

Principal FE Only -0.4 0.62 0.68 1.09 1.10 .

0.0 0.70 0.89 1.26 1.27 .

0.4 0.80 1.12 1.39 1.40 .
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C Variance Decomposition of Math Test Scores

in Tennessee and New York City

To provide empirical support for our simulation parameters, we conducted variance
decompositions for standardized math test scores in Tennessee and New York City.
Specifically, we estimate via restricted maximum likelihood the following general form
mixed model:

Yijst = λ(f(Yi,t−1)) + γXit + φZst + vijst (1)

where vijst is a composite error term that includes either a (1) school-by-year random
effect or (2) principal and school random effects. We control for prior-year test scores
in both subjects and prior-year attendance rate (including squared and cubed terms),
student characteristics (race/ethnicity, gender, FRPL-eligible, special education status,
gifted status, flag for grade repetition, flag for within-year move to another school),
and school-by-year means of the student characteristics.

Table C.1: Variance Components for Student Test Score Growth

Tennessee New York City

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A
School-by-Year 18.6 9.8 9.6 8.5 27.0 8.0 6.5 5.4
Residual 81.4 90.2 90.4 91.5 73.0 92.0 93.5 94.6

Panel B
Principal 4.1 5.8 5.9 6.0 3.4 2.2 2.3 2.2
School 18.0 6.1 5.7 6.2 24.0 4.6 3.0 2.0
Residual 77.9 88.2 88.5 87.8 72.6 93.2 94.7 95.8

Prior-year Test Scores
Student Characteristics
School Characteristics

Table C.1 shows variance components for the school-by-year random effects model
in panel A and the principal and school random effects model in panel B. We show four
specifications, beginning with an empty model and successively adding sets of controls.
Panel A shows that the magnitude of the school-by-year random effect accounts for
roughly 5–10% of the variation in residualized test scores. Panel B shows that even
controlling for prior test scores, student characteristics, and school-by-year means of the
student characteristics, there remains a substantial unobserved contribution of schools
to the total variation in student test scores. Further, the magnitude of the principal
and school random effects are roughly equal, underscoring the potential for bias in
principal VA estimates that do not include school fixed effects.
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