
Estimating Student Growth on Psychological 
and Social-emotional Constructs:
A Comparison of Multiple Scoring Approaches

A huge portion of what we know about how humans develop, learn, behave, and interact is based 
on survey data. Researchers use longitudinal growth modeling to understand the development of 
students on psychological and social-emotional learning constructs across elementary and middle 
school. In these designs, students are typically administered a consistent set of self-report survey 
items across multiple school years, and growth is measured either based on sum scores or scale 
scores produced based on item response theory (IRT) methods. While there is great deal of 
guidance on scaling and linking IRT-based large-scale educational assessment to facilitate the 
estimation of examinee growth, little of this expertise is brought to bear in the scaling of 
psychological and social-emotional constructs.  Through a series of simulation and empirical 
studies, we produce scores in a single-cohort repeated measure design using sum scores as well as 
multiple IRT approaches and compare the recovery of growth estimates from longitudinal growth 
models using each set of scores. Results indicate that using scores from multidimensional IRT 
approaches that account for latent variable covariances over time in growth models leads to better 
recovery of growth parameters relative to models using sum scores and other IRT approaches.

Suggested citation: Kuhfeld, Megan, and James Soland. (2020). Estimating Student Growth on Psychological and 
Social-emotional Constructs: A Comparison of Multiple Scoring Approaches. (EdWorkingPaper: 20-193). 
Retrieved from Annenberg Institute at Brown University: https://www.edworkingpapers.com/ai20-193

Megan Kuhfeld
NWEA

James Soland
University of Virginia

VERSION: January 2020

EdWorkingPaper No. 20-193



SCORING LONGITUDINAL SURVEY DATA 

1 

 

 

 

 

Estimating Student Growth on Psychological and Social-emotional Constructs:  

A Comparison of Multiple Scoring Approaches 

 

Megan Kuhfeld 

Research Scientist, NWEA 

 

James Soland 

Assistant Professor, University of Virginia 

 

 

 

January 3, 2020 

 

CONTACT INFORMATION:  

Megan Kuhfeld  

121 N.W. Everett Street  

Portland, OR 97209  

Ph. 503-548-5295  

megan.kuhfeld@nwea.org  



SCORING LONGITUDINAL SURVEY DATA 

2 

 

Abstract 

A huge portion of what we know about how humans develop, learn, behave, and interact is based 

on survey data. Researchers use longitudinal growth modeling to understand the development of 

students on psychological and social-emotional learning constructs across elementary and middle 

school. In these designs, students are typically administered a consistent set of self-report survey 

items across multiple school years, and growth is measured either based on sum scores or scale 

scores produced based on item response theory (IRT) methods. While there is great deal of 

guidance on scaling and linking IRT-based large-scale educational assessment to facilitate the 

estimation of examinee growth, little of this expertise is brought to bear in the scaling of 

psychological and social-emotional constructs.  Through a series of simulation and empirical 

studies, we produce scores in a single-cohort repeated measure design using sum scores as well 

as multiple IRT approaches and compare the recovery of growth estimates from longitudinal 

growth models using each set of scores. Results indicate that using scores from multidimensional 

IRT approaches that account for latent variable covariances over time in growth models leads to 

better recovery of growth parameters relative to models using sum scores and other IRT 

approaches. 

 Keywords: psychological development, social-emotional learning, developmental 

trajectories, growth modeling, multidimensional item response theory (MIRT). 
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Estimating Student Growth on Psychological and Social-emotional Constructs:  

A Comparison of Multiple Scoring Approaches 

Oftentimes, psychologists and researchers from related disciplines are interested not only 

in a person’s position on a latent psychological construct at a point in time, but also that 

individual’s growth on the construct over time. Particularly among developmental psychologists, 

the trajectories of children on latent psychological and social-emotional1 constructs like self-

efficacy, motivation, and self-concept that are not directly observable represent the primary topic 

of inquiry. Such trajectories provide insight into what normative developmental patterns look 

like, including whether children may not be developing at a typical pace. Further, growth on 

latent constructs is often used to evaluate programs and interventions to see if those actions 

change trajectories for the better. In short, a huge swath of the psychological, educational, and 

broader social science literature is devoted to understanding how people grow on constructs over 

time. 

Since these psychological constructs of interest cannot be directly observed, they are 

often measured by a set of survey items administered at multiple time points. After the item 

responses are collected, there are two central approaches currently used to examine children’s 

developmental trajectories. The first follows a two-step procedure, where (a) scores are produced 

to quantify a child’s trait level at each time point, and (b) these scores are used in statistical 

modeling procedures such as repeated measures analysis of variance (ANOVA), multilevel 

models, or latent growth curve models (LGCMs).  Said differently, growth is estimated based on  

a single composite score (e.g., total sum score or estimated factor score) that is used to represent 

the construct at a given timepoint, rather than the item responses used to estimate those scores.  
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The second approach is to use structural equation modeling (SEM) with a measurement 

submodel (Bollen & Curran, 2006).  This approach is used to directly model the latent construct 

at each timepoint using observed item responses and estimate growth based on those time-

specific latent variables in a single modeling framework.  Oftentimes, this approach is referred to 

as “curve of factors” or as second-order growth modeling (Hancock, Kuo, & Lawrence, 2001; 

McArdle, 1988).  Research has demonstrated many advantages of the second-order growth 

model over the two-stage approach in the particular case when observed (sum or mean) scores 

are used for the latter (Geiser, Keller, Lockhart, 2013; Bishop, Geiser, & Cole, 2015).  

However, as reviewed and investigated by Bauer and Curran (2015), simultaneously 

modeling measurement and estimating growth is frequently hampered by computational and 

practical concerns, including the large samples needed to obtain stable parameter estimates. 

Perhaps as a result, in a review conducted by Isiordia and Ferrer (2018), of 100 articles on 

growth in the Education Resources Information Center (ERIC) database from 2005 to 2015, none 

used a second-order growth model.  In our own brief review of the literature on psychological 

and social-emotional development, we found only a handful of studies using an approach 

comparable to a second-order growth model (e.g., Caprara et al., 2008; Caprara, Vecchione, 

Alessandri, Gerbino, & Barbaranelli, 2011; Soland, Jensen, Keys, Bi, & Wolk, 2019; Soland, 

Kuhfeld, Wolk, & Bi, 2019).  

Given that the two-step procedure is still most widely used to study children’s 

developmental trajectories, more careful consideration is needed to understand the impacts of the 

scoring approach used in the first stage on our understanding of how children develop. As Bauer 

and Curran (2016, pg. 2) point out, “there is a lack of alignment between how outcomes are 

measured and the models subsequently used to analyze individual differences in stability and 
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change”. There are many ways in which scores can be produced from a single data source, and 

these choices are increasingly considered to be an underemphasized cause of the well-

documented replication issues in psychological studies (Fried & Flake, 2018; McNeish & Wolf, 

2019). Many researchers in the psychological literature prefer to measure relevant constructs 

using observed scores (either sum scores or means of items) from survey instruments (Bauer & 

Curran, 2016). However, there are known limitations of sum scores for inferences about 

psychological constructs.  At a single point in time, sum scores make a range of strong 

assumptions, including that all students have received and answered the same item set, all items 

are equally difficult, and items do not display any measurement invariance (e.g., that all items 

are equally developmentally appropriate across age groups and across gender/race/language 

levels).  However, most research that uses sum/mean scores to study psychological constructs 

does not examine the veracity of these assumptions prior to using the scores (Crutzen & Peters, 

2017).  

Furthermore, though largely unstudied, issues with sum scores are likely compounded 

when used in growth models.  Beyond the large (oftentimes untenable) assumptions made at a 

single point in time, sum scores used in longitudinal models require several additional 

assumptions, including that items function similarly across timepoints (e.g., items maintain the 

same level of difficulty and construct relevance across multiple observations).  Research has 

shown that such failures of longitudinal measurement invariance can change fundamental 

inferences about developmental trajectories (e.g., Widaman, Ferrer, & Conger, 2010; 

Willoughby, Wirth, & Blair, 2012).  Thus, much of what we know about growth on latent 

constructs is, at best, likely impacted by strong assumptions implicit in sum scores. 
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Given the limitations of sum score approaches, there are a bevy of item response theory 

(IRT) and other latent variable models that have been employed in the context of educational 

measurement (particularly large-scale assessments).  Further, a set of multidimensional IRT-

based methods have been developed specifically to scale tests to appropriately account for 

multiple timepoints (e.g., Koran, 2009; Paek, Li, & Park, 2016).  However, these longitudinal 

measurement models are rarely used in the context of measuring students’ psychological and 

social-emotional development. Furthermore, little evidence exists on which latent variable 

approach does the best job not only of recovering true scores, but also recovering true growth 

parameters when the scores are used in a latent growth model. That is, if estimates of true 

population-level slope parameters are the estimand of interest, which scoring approach best 

reproduces those parameters?  Despite the emergence of multiple model-based alternatives to 

scoring, little is known about which does a better job of recovering growth parameters (nor do 

we know how much better these models perform relative to using observed scores in growth 

models). 

Our study involves simulation and empirical studies to investigate how to optimally score 

longitudinal survey data if the parameters of interest are students’ latent growth trajectories.   In 

the simulation study, we generate item response data under a number of different conditions, 

produce scores using sum scores and multiple IRT approaches, and compare those scores using 

latent growth models. Through this approach, we can determine how effectively using the 

observed scores in growth models recovers true trajectories under a number of conditions, and 

see whether IRT-based models perform better, including relative to each other.  Perhaps more 

importantly, we can determine which IRT approach best recovers the true scores and growth 

parameters so that researchers interested in psychological development have guidelines on which 
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scoring strategy to use. The empirical study compares the various scoring approaches using a 

widely used survey measure of growth mindset.  

Background 

Approaches for Calibrating and Scoring Multi-Timepoint Surveys 

 Before we can study students’ developmental trajectories, we must (a) administer a 

survey measure at multiple timepoints, and then (b) scale and score the measure based on the 

item responses obtained (a process referred to as calibration). One of the most common scoring 

approaches used in psychology and education for survey measures is to simply add up the item 

responses. While this method works in some situations when a set of strong assumptions hold 

(Bauer & Curran, 2016), it also has known limitations.  As McNeish and Wolf (2019) point out, 

using a sum score is mathematically equivalent to fitting a measurement model with strong 

assumptions about the items and their reliability.  For example, in a traditional SEM framework, 

such a model assumes that all items are equally related to the construct of interest (e.g., all the 

loadings are one) and that the error variances for all the items are equal.  Further, a sum score 

model fails to account for potential differences in the severity (or in IRT parlance the 

“difficulty”) of the items. For example, sum scores from a math test would place equal weight on 

the items “What is 2+2?” and “What is the square root of 325?” even though these items vary 

greatly with regards to their difficulty. Sum scores additionally assume that the measure 

functions identically across groups (e.g., boys do not have a higher probability than girls of 

endorsing an item, controlling for the underlying latent trait) as well as across time, an 

assumption that is frequently violated in longitudinal studies that span developmental periods 

(Millsap, 2012). Given these assumptions, sum scores tend to be much less reliable, which has 
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consequences for uses of related scales, including for how students are classified on the basis of 

a scale (McNeish & Wolf, 2019).   

 There are a number of IRT-based alternatives that do not have the same limitations as 

sum scores. Under these approaches, a measurement model is fit to the item response data and 

then scores are produced based on the calibrated item parameters (Embretson & Reise, 2013; 

Wirth & Edwards, 2007). While IRT is now widely used in educational and psychological 

measurement (Reise & Waller, 2009; van der Linden & Hambleton, 2013), applying this 

approach to produce scores in a longitudinal design can be less than straightforward. There are a 

number of choices that a researcher can make when calibrating/scoring a scale, including (a) the 

calibration sample used (e.g., a single timepoint from the data collected in a study or multiple 

timepoints of item response data), (b) the IRT model used to calibrate (e.g., a unidimensional or 

multidimensional model), and (c) the scoring approach used (e.g., maximum likelihood, expected 

a posteriori [EAP], and modal a posteriori [MAP] scoring). While questions of IRT model type 

and scoring approach have been examined in depth for scores at a single point in time (Kolen & 

Tong, 2010; Maydeu-Olivares, Drasgow, & Mead, 1994), choices around the calibration sample 

and IRT model used for longitudinal measurement are less well understood.   

We now describe a set of possible calibration samples and IRT models that can be used to 

produce scores for growth modeling, starting with the simplest and moving towards increased 

complexity.  All of these approaches have been used in practice, examined empirically in 

research, or both (Bauer & Curran, 2015).  We also discuss the accompanying IRT model used to 

score those different calibration samples.  Perhaps the most fundamental consideration under 

investigation is whether to use an IRT model that calibrates based on a single timepoint versus a 

MIRT model that includes latent variables for scores at all timepoints.   
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 1. Cross-sectional IRT Calibration, Unidimensional IRT Model. The first approach 

we considered is to calibrate the measure using cross-sectional data from a single time point. 

That is, even though students have item responses from multiple timepoints, only responses from 

the first timepoint are used. Such an approach might be taken in the event that parameters are 

calibrated before subsequent waves of data are collected, and those parameter values continue to 

be used to score subsequent waves. Depending on the data collection design, scores from just a 

single age group or multiple age groups at Time 1 could be used. Once the item parameters are 

obtained using a unidimensional IRT model, the parameters are treated as fixed for the later 

waves and used to score the item responses in the remaining timepoints.  Figure 1(a) presents the 

path diagram for the unidimensional cross-sectional IRT model. 

 As described below, in our own study, we calibrated item parameters based on scores 

from just a single age and timepoint (what we refer to as a “restricted age” calibration). In a 

hypothetical scenario where there are four years of data, Table 1 shows a set of possible 

combinations of students that can be used for calibration. The top panel of Table 1 shows the 

respondents used in the “restricted age” calibration, where item parameters were estimated using 

only students in 5th grade at Time 1. If the study design allows for the collection of data from 

multiple ages at the first timepoint, an alternative cross-sectional IRT approach could be used. 

This cross-sectional “range of ages” design combines the item responses from students across 

multiple grade levels/age cohorts observed during the first timepoint (middle panel of Table 1). 

However, since this “range of ages” design is less common than a single cohort design in 

longitudinal research, we have chosen to examine only the “restricted age” calibration 

condition.2 
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 For Likert-type items, item calibration and scoring can be accomplished using the graded 

response model or GRM (Samejima, 1969).  Let there be 𝑗 = 1, … , 𝑛 items and 𝑖 = 1, … , 𝑁 

individuals. Let the response from individual i to item j at timepoint t be 𝑦𝑡𝑖𝑗 , where 𝑦𝑡𝑖𝑗 has 

K response categories. It can be assumed that 𝑦𝑡𝑖𝑗 takes integer values from (0, … , 𝐾 − 1). Let 

the cumulative category response probabilities be 

 
 

𝑃(𝑦𝑡𝑖𝑗 ≥ 1|𝜃𝑖) =
1

1 + exp[−(𝑐𝑗1 + 𝑎𝑗𝜃𝑖)]
 

 

                                                                    ⋮ (1)  

 
𝑃(𝑦𝑡𝑖𝑗 ≥ 𝐾 − 1|𝜃𝑖) =  

1

1 + exp[−(𝑐𝑗,𝐾−1 + 𝑎𝑗𝜃𝑖)]
 

 

The category response probability is the difference between two adjacent cumulative 

probabilities 

 

𝑃(𝑦𝑡𝑖𝑗 = 𝑘|𝜃𝑖) = 𝑃(𝑦𝑡𝑖𝑗 ≥ 𝑘|𝜃𝑖) − 𝑃(𝑦𝑡𝑖𝑗 ≥ 𝑘 + 1|𝜃𝑖), (2)  

 

where P(𝑦𝑡𝑖𝑗 ≥ 0|𝜃𝑖) is equal to 1 and P(𝑦𝑡𝑖𝑗 ≥ 𝐾|𝜃𝑖) is zero. The item parameter 𝑎𝑗 is the 

slope parameter describing the relationship between item j and the latent factor and 

𝑏j1, … , 𝑏𝑗,𝐾−1 are a set of 𝐾 − 1 (strictly ordered) parameters. The thresholds denote the point on 

the latent variable separating category 𝑘 from category 𝑘 + 1.  

In the unidimensional case, the logit in Equation 1 can be re-expressed in a more 

convenient slope-threshold form as 𝑐𝑗𝑘 + 𝑎𝑗𝜃𝑖 = 𝑎𝑗(𝜃𝑖 − 𝑏𝑗𝑘), where 𝑏𝑗𝑘 = −𝑐𝑗𝑘/𝑎𝑗 is the 

threshold (also referred to as severity or difficulty) parameter for category 𝑘. The 𝑘th threshold 

denotes the point on the latent variable separating category 𝑘 from category 𝑘 + 1. However, the 

slope-threshold form does not generalize well to multidimensional models, so we adopt the 

slope–intercept parameterization here and for all remaining IRT models presented. 
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There are multiple possible limitations in using just a single timepoint to calibrate scores 

for longitudinal research. First, in the single age group design, we are assuming that the items 

function similarly in the age group studied and in all of the other ages at which students may be 

assessed. Second, in both approaches, the calibration approach contains only one observation 

per person and does not provide any information about whether the construct of interest varies 

within persons across time.  When, for example, EAP or MAP scoring is used, we assume a 

single mean.  Thus, in a scenario with true population growth, the score estimates are shrunken 

(and therefore biased) towards a mean that assumes no change across time. 

  2. Longitudinal IRT Calibration, Unidimensional IRT Model. The second possible 

approach is to calibrate the item response data using all available timepoints from a given cohort 

in a single unidimensional model. That is, item responses across different timepoints from a 

single individual are treated as independent observations in a single (long) data file, and a 

unidimensional model is estimated based on the pooled (across-years) item responses. Returning 

to bottom panel of Table 1, item responses within each timepoint from students in the 5th grade 

cohort would be included.  The path diagram for this model is shown in Figure 1(b).  One 

advantage of this approach is that it makes use of all of the available data for a cohort. The 

downsides of the approach are that (a) the longitudinal data are treated as coming from a single 

normally distributed population rather than freely estimating the latent means/variances of the 

later timepoints separately, (b) since we assume responses across time for an individual are 

independent, the serial correlation due to observing the same respondents across timepoints is not 

modeled directly, and (c) measurement invariance of all of the item parameters is assumed but 

not directly testable.   
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3. Longitudinal IRT Calibration, Multidimensional IRT Model. The third approach 

uses a multidimensional item response theory (MIRT) model to estimate latent change across 

time in an IRT framework. Item response data from each timepoint are combined and calibrated 

simultaneously across the T timepoints.  The path diagram for this model is shown in Figure 1(c). 

As shown in Figure 1(c), items are calibrated for Cohort 1 such that each grade/timepoint has its 

own latent variable estimate.  We use a multidimensional extension of the GRM. Let the 

cumulative category response probabilities be 

 
 

𝑃(𝑦𝑡𝑖𝑗 ≥ 1|𝜽𝒊) =
1

1 + exp[−(𝑐𝑗1 + 𝒂𝑗
′𝜽𝒊)]

 
 

                                                                    ⋮ (3)  

 
𝑃(𝑦𝑡𝑖𝑗 ≥ 𝐾 − 1|𝜽𝒊) =  

1

1 + exp[−(𝑐𝑗,𝐾−1 + 𝒂𝑗
′𝜽𝒊)]

 
 

As with the unidimensional model, the category response probability is the difference between 

two adjacent cumulative probabilities. The difference between the unidimensional and 

multidimensional GRM is that 𝜽𝒊 is now a T×1 vector of latent traits and 𝒂𝑗
′ a vector of slope 

parameters. 

Given the same items are repeated across time points, we include a set of equality 

constraints for the item parameters of the repeated items. Let 𝜑𝑡𝑗={𝒂𝑡𝑗
′ , 𝑐𝑡𝑗1, … , 𝑐𝑡𝑗,𝐾−1} be the 

vector of item parameters for item j observed at the first time point (𝑡 = 1). We assume that 

𝜑1𝑗 = 𝜑2𝑗 = ⋯ = 𝜑𝑇𝑗, where 𝜑𝑇𝑗 is the item parameter vector for item j measured at time 𝑇. 

The first latent dimension is often (but not always) constrained for identification purposes to 

follow a standard normal distribution 𝜃𝑇1~𝑁(0,1), and the mean, variance, and covariance of the 

other latent factors are freely estimated relative to the first timepoint.   
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Thus, unlike Approaches 1 and 2, the MIRT approach explicitly accounts for the over-

time correlations in the model. While it is expected that the scores generated under Approaches 1 

and 2 would have attenuated over-time correlations, this problem should be mitigated by the 

inclusion of this information in the MIRT model. However, this approach does not model the 

possible serial correlation due to each item on the survey being administered repeatedly across 

the timepoints (Paek et al., 2014).  

4. Longitudinal IRT Calibration, Multidimensional IRT Model with Serial 

Correlation. The fourth approach involves an adapted version of the two-tier full-information 

IRT framework (Cai, 2010b, 2010a). This approach uses the same sample and latent 

psychological factors as in Approach 3, but adds a set of secondary dimensions that capture the 

serial correlation due to the same item being repeated across multiple timepoints. Each 

observation of item j (e.g., at Time 1, Time 2, etc.) loads on a single secondary (or specific) 

factor.  In the two-tier formulation, the GRM cumulative response probabilities are  

 
𝑃(𝑦𝑡𝑖𝑗 ≥ 1|𝜽𝒊) =

1

1 + exp[−(𝑐𝑗1 + 𝒂𝑗𝑝
′ 𝜽𝒊𝒑 + 𝑎𝑗𝑠𝜃𝑠)]

 
(4) 

                                                                    ⋮  

 
𝑃(𝑦𝑡𝑖𝑗 ≥ 𝐾 − 1|𝜽𝒊) =  

1

1 + exp[−(𝑐𝑗,𝐾−1 + 𝒂𝑗𝑝
′ 𝜽𝒊𝒑 + 𝑎𝑗𝑠𝜃𝑠)]

 
 

where 𝒂𝑗𝑝
′  is the T×1 vector of item slopes on the primary (p) factors and 𝑎𝑗𝑠 the item slope on 

specific factor s. For model identification, we fix the distribution of the first primary latent factor 

𝜃𝑇1~𝑁(0,1) and each of the specific dimensions (𝜃𝑠~𝑁(0,1), for s=1,…,S), and free the mean 

and variance of the remaining primary dimensions (𝑡 = 2, … , 𝑇). Additionally, the slope 

parameters of each specific factor are set equal.  The path diagram for this model is shown in 

Figure 1(d). 
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Prior comparisons of scoring approaches 

A handful of researchers have proposed MIRT models to scale test scores accounting for 

the longitudinal nature of the data and compared estimated growth parameters across models. 

Paek, Park, Cai, and Chi (2014) examined three different IRT approaches to estimate growth in a 

single-group anchor test design with dichotomous items, where the same students took two 

multiple-choice mathematics assessments that were linked with seven common (anchor) items. 

They examined three approaches: (a) separate calibrations of each timepoint’s data, (b) a two-

dimensional MIRT model, and (c) a nine-dimensional MIRT model containing two primary 

factors and seven specific factors.  Examinee change scores were then compared across models. 

In terms of tracking individual growth, growth patterns, and model–data fit, their results 

demonstrated the importance of modeling serial correlation over multiple time when producing 

scores for use in growth models.  For example, 14% of examinees at Time 1 and 36.4% at Time 

2 had more than a |.2| difference (one fifth of a standard deviation on the 𝜃 scale at Time 1) 

between models that did and did not properly account for serial correlation. 

Bauer and Curran (2015) compared different scoring methods with dichotomously-scored 

longitudinal data, including the cross-sectional IRT model (our first approach) and the 

longitudinal MIRT model (our third approach). Using a single simulated dataset with 12 

dichotomous items, Bauer and Curran (2015) found that the cross-sectional IRT calibration 

resulted in muted age trends and underestimated the degree of individual differences in the 

trajectories across time, whereas the longitudinal IRT calibration resulted in better estimates of 

the random effect variances. 

The primary limitations of this literature are that (a) most of the research has focused on 

scaling dichotomous items rather than Likert-type items frequently used on surveys, (b) the 
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shortest measure considered was nine items, whereas psychological constructs are frequently 

assessed with a small number of items (in fact, Flake, Pek, & Hehman [2017] found that the 

average scale reported in the Journal of Personality and Social Psychology was only 4.7 items 

long), (c) none have provided a comparison of the IRT approaches with sum scores, and (d) most 

previous studies used either an empirical example or a single simulated data file. These 

limitations reduce the applicability of these studies for the analysis of psychological constructs, 

which are frequently assessed with relatively short Likert-type survey measures that contain 

consistent items across time.  

Study Purpose 

The purpose of this study is to demonstrate the effect of calibration and scoring 

techniques on the results from longitudinal latent growth analyses. Specifically, we compare the 

performance of five scoring approaches (sum scores and the four IRT calibration/scoring 

approaches outlined above) that could be applied to multi-timepoint survey data in terms of 

recovery of the true latent growth parameters. In the first simulation study, we generate data for 

three timepoints assuming students’ true latent scores follow a linear growth model and examine 

parameter recovery under various conditions. In the second simulation study, we generate data 

for four timepoints assuming students’ true latent scores follow a quadratic growth model. In the 

empirical analyses, we apply all five scoring approaches to item responses from 3,266 students 

who were administered the CORE survey of growth mindset once a year from 5th to 8th grade. 

Simulation Study 1 

In the first simulation study, we examined the recovery of the generating latent linear 

growth parameters under various conditions. We assume a structure consisting of a latent trait 

measured by the same (either four or eight) Likert-type items at each of three time points, where 
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the latent trait is assumed to grow linearly across time. We varied the number of items in each 

time point (n=4 or n=8), the number of individuals within the cohort (N=500, 1,000, and 2,000), 

the degree of linear change across time (0, .2, and .5 SD per year), and the difficulty of the item 

parameters (low difficulty items vs. mix of low/high difficulty). Crossing the levels, these four 

factors result in (2 × 3 × 3 × 2) = 36 total conditions. The data for all conditions were 

generated using the “Simulation” mode in flexMIRT (Cai, 2017). The generating model was 

based on user-supplied item parameters, latent mean vector, and a latent variance–covariance 

matrix.  All parameters were based on estimates from empirical data in previous studies, 

including by the Authors (under review). 

Population model. We assume that individual i's vector of true latent scores 𝛉𝒊 follow a 

linear latent growth model. That is to say, we assume that  

  𝛉𝒊 = 𝚲𝜼𝒊 + 𝝐𝒊           (5) 

where 𝚲 is a fixed factor loading matrix, 𝜼𝒊 is a vector representing a student’s latent intercept 

and growth term, and 𝝐𝒊 is a vector of time-specific random disturbance terms assumed to be 

normally distributed with means of zero and variance 𝚿. Each of the individual’s 𝜼𝒊 can be 

decomposed into two parts: 

     𝜼𝒊 = 𝜶 + 𝜻𝒊,          (6) 

where 𝜶 is the population average and 𝜻𝒊 represents an individual deviation from that average. 

The model-implied mean vector and variance-covariance matrix for the latent growth model are 

𝛍 = E(𝛉𝒊) = 𝚲𝜶          (7) 

𝚺 = V(𝛉𝒊) = 𝚲𝚽𝚲′ + 𝚿,              (8) 

where 𝚽 is variance-covariance matrix for the latent factors and 𝚿 is the residual variance-

covariance matrix. The generating parameters for the three timepoint condition are below.  
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𝚲 =  [
1 0
1 1
1 2

] , 𝜶 = (
0
𝑔

) , 𝚽 = [
0.47 −0.066

−0.066 0.08
] , 𝚿 = [

. 53 0 0
0 . 582 0
0 0 . 474

], 

where 𝑔 can take the value of 0, 0.2, or 0.5 depending on the condition. We selected these 

generating values based on a prior analysis of social-emotional growth across three years 

(Authors, under review). The generating parameters were used to supply the model-implied 

mean vector and variance-covariance matrix to flexMIRT for data generation.    

Item parameters. After generating the true 𝛉 values, the item responses were simulated 

using a multidimensional GRM for five response categories. The generating item parameters 

were slightly modified from an existing measure of children’s interpersonal competencies 

(DeWalt et al., 2013).  The two sets of generating item parameter are shown in Table 2. A known 

problem in the measurement of psychological and social-emotional constructs through self-report 

surveys is that individuals tend to select primarily from the top two response categories on 

Likert-type scales, which typically results in item thresholds (𝒃𝒋) that are primarily concentrated 

on the lower end of the latent scale and little ability to differentiate reliably among students at the 

top end of the scale (see, for example, Dewalt et al., 2013; Kuhfeld, 2019). Therefore, in our first 

condition, we chose items only with low thresholds (ranging from -3.01 to .44) to mirror 

conditions frequently observed with existing psychological measures. However, to ensure our 

conditions generalized beyond just self-report surveys, our second condition included a range of 

thresholds across all items (ranging from roughly -2.96 to 2.35). In this study, we assumed full 

measurement invariance, and so the same item slopes (𝒂𝒋) and threshold (𝒃𝒋 = 𝑏1𝑗, 𝑏2𝑗, 𝑏3𝑗 , 𝑏4𝑗) 

parameters were used for item j across each timepoint.  

Calibration and Scoring 
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IRT calibration/scoring was conducted under each of the four IRT approaches in 

flexMIRT (Cai & Wirth, 2013). The unidimensional models were estimated using Bock-Aitken 

EM estimation, while the two MIRT models were estimated using the Metropolis-Hastings 

Robbins-Monro (MH-RM) algorithm (Cai, 2010b, 2010a).  Estimates of the person-level scores 

were produced based on the calibrated item parameters using the EAP scoring approach (Bock & 

Mislevy, 1982).  For the cross-sectional calibrations (Approach 1), item parameters calibrated 

based on the first timepoint only were used to estimate scores for later timepoints. Additionally, 

we produced sum scores within each timepoint (e.g., summing all item responses for individual i 

in time t). Sum scores in each timepoint were standardized by the first timepoint mean and 

variance estimates. All models converged to a possible local maximum. 

Growth models 

 After scoring all the simulated respondents, a set of parallel linear latent growth models 

were estimated in lavaan (Rosseel, 2012).  One use the true underlying 𝛉 scores, another used 

sum scores, and four used the estimated 𝛉̂𝐸𝐴𝑃 scores from the different calibration conditions. In 

each analysis, the model shown in Equations 5 and 6 was estimated, with the 𝛉̂𝐸𝐴𝑃 scores 

substituted for 𝛉 when examining the estimated score results.  

Results  

In this section, two primary results are evaluated. First, we examine growth model 

parameter estimates across calibration approaches and simulation conditions.  Second, we 

present and discuss correlations of estimated scores with true scores within each timepoint. We 

should note that results for IRT Approaches 3 and 4 (the two MIRT models) were extremely 

similar.  Therefore, we only report results from Approach 3.   
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 Table 3 provides a set of growth model parameter estimates across simulation conditions, 

averaged across 100 replications. We only interpret the growth parameters from the “low 

difficulty” condition, but the full set of simulation conditions are presented in Appendix Tables 

A1 and A2.  Whereas the MIRT model estimates tend to overstate the slope slightly, the non-

MIRT estimates tend to understate the slope significantly, in some cases by almost half the 

magnitude of the slope (e.g., true slope = .5 based on observed scores).  Further, the other IRT 

models often do not perform demonstrably better than when using observed scores.  In general 

(and as expected), most of the variance estimates are also understated when using non-MIRT 

models.  To make this point clearer, Figure 2 presents estimated growth trajectories for a random 

sample of 100 simulees by scoring approach. The degree of individual differences in growth 

trajectories is greatly underestimated when standardized sum scores are used. Instead of having 

score trajectories that span the y-axis, students’ sum scores are highly compressed, poorly 

reflecting the true variability in starting point and growth observed with the true scores. The two 

sets of scores from the unidimensional calibrations are an improvement over the sum scores, but 

only the scores produced from the MIRT model appear to properly capture the wide variation in 

growth trajectories observed based on the true scores.  

 Finally, we compared correlations of estimated scores with true scores within each 

timepoint.  Those results are presented in Table 4.  In general, correlations were high, especially 

for the MIRT model.  (Correlations were lower between true scores and sum scores across 

simulation conditions.)  However, under some conditions, correlations diminished over time, 

especially at the third timepoint.  This diminution mainly occurred with easy items, and was 

especially pronounced with a true slope of .5 and only four items.  The relatively poor recovery 

of true scores at timepoint three under these conditions may have occurred due to ceiling effects.  
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That is, given the item difficulty ranges of the items within the survey, there is little information 

to distinguish reliably among students at the upper end of the latent continuum. In terms of 

growth, with a slope of .5, simulees grew quickly, but were already at the high end of the 

observed response scale in Time 1.  By comparison, correlations hardly diminished over time 

when item difficulty was more varied. 

Simulation Study 2 

 In the second simulation study, we generate true scores across four timepoints following 

a nonlinear latent growth model and examine the recovery of the linear and quadratic latent 

means and variances. Here, we generate data for an eight-item measure with N= 2,000 simulated 

respondents. 

Data Generation 

As with the previous study, the data were generated using the “Simulation” mode in 

flexMIRT (Cai, 2017). We used the “low difficulty” set of generating item parameters shown in 

the left set of columns of Table 2. The generating structural parameters used to produce the 

model-implied mean vector and variance-covariance matrix for 𝛉 in the four-timepoint condition 

were  

       𝚲 =  [

1 0 0
1 1 1
1 2 4
1 3 9

] , 𝜶 = (
0

. 077
−.017

) , 𝚽 = [
. 337 . 0155 −.001
. 016 . 172 −.026

−.001 −.026   0.017
],      (9) 

 𝚿 = [

0.666 0 0 0
0 0.570 0 0
0 0 . 500 0
0 0 0 . 150

]. 

Calibration and Scoring 

 The calibration and scoring conditions for this study mirrored Simulation Study 1. One 

hundred replications were conducted. All of the models converged to a possible local maximum. 
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Results 

 Table 5 shows results from the simulation with four timepoints.  As in the prior 

simulation, we present means, variances, and the covariances for the intercept, slope, and 

quadratic term.  In general, the MIRT model marginally outperforms the sum score and cross-

sectional models for the fixed effect estimates of the slope and quadratic means.  Whereas the 

MIRT model overstates the linear slope mean slightly, the other three approaches tend to 

understate the slope.   

 Turning to variances, the intercept and linear slope variances are much better recovered 

by the MIRT model.  While the MIRT model comes close to the generating parameters, the other 

models tend to understate the variance substantively.  Differences for the covariance estimates 

tend to be fairly negligible.   

Empirical Study 

Our empirical study focuses on the impact of various scoring approaches on estimates of 

students’ growth trajectories using a widely-studied construct: growth mindset.  There is 

expanding research on how students’ growth mindset develops across elementary and middle 

school.  For example, researchers have used the GPCM to estimate scores on growth mindset, 

then used those scores to examine growth in the construct over time, as well as teacher and 

school contributions to that growth (Loeb et al., 2019; West et al., 2016, 2018). Some limited 

research has shown that growth mindset tends to decrease during middle school (Pintrich & 

Zusho, 2002), though some of the work by West et al. (2016) and the Authors (2019) actually 

shows increases on average during this time period. Even given the relative sparseness of the 

literature on growth for this construct, there is already disagreement on the trends, which may 
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arise in part due to how the construct is being measured and scored (Duckworth & Yeager, 

2015). 

Sample.  Our study used a sample of students from a California district that is urban, 

high-poverty, and serves a high proportion of English learners.  To avoid conflating across-grade 

differences in test scores with growth on the underlying construct, we follow a single cohort of 

students from 5th to 8th grade. The cohort was not intact, with approximately half of the students 

taking the survey at all three timepoints and half taking the survey during only one or two of the 

school years.  The sample size for our analyses ranged from 2,319 to 3,266 students depending 

on the number of complete survey responses for a given year.  Roughly 20% of students were 

English learners, 10% were receiving special education services, and most were at approximately 

the 30th percentile nationally in reading and math achievement (Thum & Hauser, 2015).   

 Measures. Students in the sample took surveys administered by the district each spring to 

measure academic growth mindset.  Specific items in the survey can be found in Table A3 in the 

Appendix. Each item uses a five-category Likert scale. Mean growth mindset scale scores tend to 

increase over time, with a mean of 3.4 in 5th grade and a mean of 3.62 in 8th grade.  Longitudinal 

measurement invariance for the growth mindset survey used in this study was examined 

previously; configural, weak factorial, and strong factorial invariance were all found to hold 

(Soland & Kuhfeld, 2019).    

Analytic Strategy.  We calibrated and scored the growth mindset item responses using 

IRT approaches 1-3 using flexMIRT (Cai, 2017).  Given how similar the scores were in the 

simulation study when using IRT approaches 3 and 4, we did not estimate the latter.  We then fit 

the same LGCMs as in the simulation studies using lavaan (Rosseel, 2012).   
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These models were fit with and without a quadratic term.  Ultimately, the model that 

included a quadratic term fit best based on the root mean square error of approximation 

(RMSEA; Steiger, 2000), the comparative fit index (CFI; Bentler, 1990), and changes in chi-

square statistics between models.  Thus, we report results for a model with a quadratic term. Like 

in the simulation studies, we used results from this model for each of the three IRT approaches to 

compare several parameter estimates.  Specifically, across IRT scoring approaches, we examined 

the means of the latent intercept, linear slope, and quadratic slope.  We also compared the 

variances and covariances of the latent intercept, linear, and quadratic terms. 

Results 

 Table 6 presents parameter estimates from our empirical analyses across the three IRT 

approaches.  As in the simulation results, models using scores from the first two IRT approaches 

differed little, but both differed substantively from the MIRT model used under the third 

approach.  For example, like in the second simulation, estimates of the intercept and slope means 

were substantively higher for IRT approach 3 than for the other two.  Also like the simulation 

study, the variances were higher.  For instance, the variance of the intercept (growth mindset in 

5th grade) was .49 for the MIRT model compared to ~.24 for the other two IRT models.   

Similar results tended to hold when comparing sum score results to those from the MIRT 

model.  Though, in some cases, the sum score models actually produced results that were more 

similar to the MIRT results than the unidimensional IRT models.  For example, the estimated 

slope mean was roughly .09 using sum scores, .06 using unidimensional models, and .12 when 

using the MIRT model results.  The estimated intercept variance based on sum scores also fell 

between those estimates from the unidimensional and MIRT models. 
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 The most pronounced differences across models were for the covariances of the random 

effects.  In particular, the covariance between the intercept and linear slope was .13 for the MIRT 

model, but was indistinguishable from zero for the other  approaches.  While this difference in 

the estimates is large, it does match the direction of the difference in the second simulation study.  

Further, the covariance between the intercept and quadratic term is roughly twice as large for the 

MIRT model compared to the other two.  Once again, this difference matched the direction of the 

difference in the simulation study.  While we obviously do not know the true growth parameters 

in the empirical study, the fact that the results match so closely between the empirical and 

simulation growth estimates suggests that the latter is not likely driven purely by how we 

generated the data.   

Discussion 

 Quantifying how children and students develop on a range of latent constructs is vital to 

understanding how best to support their psychological and educational needs.  The associated 

knowledge base is generally built on research that takes scores from a survey like, say, a self-

efficacy scale, and uses those scores in a growth model.  Despite the importance of 

understanding developmental trajectories, most of this research uses observed scores (and sum 

scores in particular) from surveys in growth models. Research shows that observed scores are 

often imprecise (if not biased) estimates of the construct of interest, and can lead to biased 

classifications and rank orderings of respondents based on those scores (Bauer & Curran, 2015; 

McNeish & Wolf, 2019).  Further, while a range of IRT models have been developed specifically 

to score longitudinal data in a way that accounts for such shortcomings (e.g., Paek, Li, & Park, 

2016), these models have rarely been used in the longitudinal survey research literature.  In short, 

we remain unclear on how much reliance on observed scores has likely affected our 
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understanding of growth trajectories, and which methods of calibration and scoring do the best 

job of recovering true growth trajectories when scores are used in growth models. 

 We begin to close this gap in the literature through two simulation studies and one 

empirical study.  In the first simulation study, we simulated true scores for three timepoints with 

known properties, including the growth trajectory that underlies them.  We then scored them 

using a range of IRT and MIRT models, used those scores in growth models, and compared 

results to a similar procedure that used sum scores.  Results indicate that MIRT models do a 

superior job of recovering a range of growth parameters.  For example, growth estimates using 

observed scores or unidimensional IRT models tend to understate the true slope in ways that are 

statistically and practically significant.  By contrast, the MIRT models we used closely recover 

the true slope parameter.  Further, non-MIRT models tend to understate the variance of the 

growth parameters, likely because the calibration approach does not account for covariances in 

the scores over time.   While these results did not tend to differ across simulation conditions, we 

did find that correlations between estimated and true scores tended to diminish over time in ways 

that were most pronounced when using shorter surveys that consisted of relatively easy items 

(though correlations were still high regardless).   

 Meanwhile, our second simulation study examined similar issues, but using four 

timepoints instead of three such that nonlinear growth trends could be generated and recovered.  

Specifically, the generating model included a polynomial term, as did the models used to 

estimate growth.  Findings from this study indicated that, as in the simulation with three 

timepoints, the MIRT model did a better job of recovering not only linear slope means, but also 

variances of the growth parameters.  Specifically, the non-MIRT models substantively 



SCORING LONGITUDINAL SURVEY DATA 

26 

 

understated the variances and the mean slope compared to the other three approaches (observed 

score, cross-sectional, and unidimensional longitudinal).  

 Finally, our empirical study used results from four timepoints and tended to corroborate 

our findings from the first simulation study.  Though we could not know true growth trajectories 

for the empirical growth mindset data, we did find that estimates of the slope and most estimated 

variances were larger when using the MIRT model than observed scores or unidimensional IRT 

models.  Given these differences across models parallel results from the first simulation study, 

and that the MIRT model in that simulation study did a better job of recovering true growth 

parameters, findings from the empirical study are congruous with an argument that simulation 

study results are not purely due to the assumptions we used to generate those data. 

Limitations and Future Research 

 A few limitations of this study bear mention.  First, like in any simulation study, we were 

limited in terms of the range of conditions, assumptions, and models we could use to test our 

hypotheses.  For example, results could differ dependent on the specific data generating growth 

model.  We also did not compare all possible variations on the available IRT and MIRT models, 

though we tried to capture the most common and likely models in the literature.  Thus, results 

should be replicated using different data generating assumptions and scoring models. 

 Second, our empirical study was limited to only a single district that serves a high 

proportion of low-income and English learner students.  Further, that district only administered a 

single growth mindset survey (once per timepoint).  On one hand, the survey has been tested for 

measurement invariance between English learner and native English-speaking students.  On the 

other, broader issues of generalizability remain.  The study should be repeated using a different 

students and measures to ensure results hold. 
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 Beyond the limitations of our empirical and simulation studies, there are other issues 

future researchers may wish to consider. For example, we did not compare IRT model 

performance in recovering growth parameters when there are failures of longitudinal 

measurement invariance, whether minor or severe.  If we were to loosen the measurement 

invariance assumptions we made, the cross-sectional and longitudinal unidimensional IRT 

results would most likely not appear as parallel as what we show. We also did not examine what 

might happen if the composition of the items used to measure the construct shifts across 

timepoints, such as when a few anchor items are maintained and others are changed. 

Additionally, while we examined multiple IRT calibration approaches in this study, we only used 

a single method to produce latent scores (e.g., EAP scoring). Future research should examine 

other potential scoring approaches, including approaches that condition on key background 

variables that may influence growth trajectories (Curran et al., 2018). 

 Finally, we did not directly compare our two-stage approach with results from second-

order (multiple-indicator) LGCMs (e.g., McArdle, 1988; Hancock, Kuo, & Lawrence, 2001). We 

chose to focus only the two-stage approach (calibration/scoring followed by first-order LGCMs) 

because (a) this approach is widely-used by applied researchers, and (b) little is known about the 

impact of the calibration model in the context where a short (4-8 item) self-report Likert-type 

survey is administered across multiple timepoints. Prior researchers have found strong 

advantages of second-order LGCMs over first-order LGCMs that use simple (sum or mean) 

scores as the composite indicator (Geiser, Keller, Lockhart,  2013). However, future research 

should compare first-order and second-order LGCMs across a range of possible calibration 

conditions to understand whether the benefits of second-order LGCMs are maintained when the 
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composite scores in the first-order model is based on a MIRT model that accurately captures the 

residual correlations inherent in the multi-timepoint data. 

Conclusion 

This study addresses the discrepancy between the measurement of outcomes and the 

modeling of growth in the context of psychological and social-emotional development. We 

compare multiple approaches to calibrate and score Likert-type measures administered across 

multiple timepoints when the goal is to accurately capture the average individual’s growth 

trajectory as well as the variability in change across time. We find that, while MIRT models are 

not a panacea for all measurement issues that can arise when attempting to quantify growth, a 

MIRT approach is likely preferable when survey responses from all timepoints are available at 

the time of calibration.  We show that these models generally do a better job of recovering true 

developmental trajectories (in particular linear growth trends), as well as variance components 

from growth models.  By contrast, using sum scores or even unidimensional IRT models can 

understate the true slope, in some cases by a magnitude of 50% of the true growth.  Estimated 

growth parameter variances for sum score and unidimensional IRT models are also much more 

muted relative to the true variance of growth parameters, as well as those generated by our MIRT 

models.      
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Notes 

 

1. The Collaborative for Academic, Social, and Emotional Learning (CASEL) defines 

social-emotional learning (SEL) as the fostering of social and emotional competencies 

through explicit instruction and through student-centered learning approaches that help 

students engage in the learning process and develop analytical, communication, and 

collaborative skills. Competencies are skills that can be taught and learned through 

appropriate pedagogy. Social-emotional learning strategies focus on development of 

skills like building healthy peer relationships, responsible decision making, self-

management, self-awareness, and social awareness to succeed in school. However, SEL 

does not encompass mental health conditions such as depression and anxiety disorders, 

nor certain psychological constructs less directly related to classroom performance. 

 

2. We did do an additional simulation using a cross-sectional (range of ages) design (middle 

panel of Table 1).  However, this simulation required a different data generating model 

and produced results that were nearly identical to those using the top panel of Table 1.   

Therefore, we do not report those results. 
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Table 1 

Comparison of Cross-sectional (Restricted-Age), Cross-Sectional (Range of Ages), and Longitudinal 

Calibration Approaches 

Grade   Time 1 Time 2 Time 3 Time 4 

Restricted-Age Cross-Sectional Design 

5  X    

6      

7      

8           

Cross-Sectional (Range of Ages) Design 

5  X    

6  X    

7  X    

8   X       

Longitudinal (Cohort) Design 

5  X    

6   X   

7    X  

8         X 
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Table 2 

Generating Parameters for Simulation Studies 1 and 2 

  "Easy" Item Difficulty Condition   "Mixed" Item Difficulty Condition 

Item a b1 b2 b3 b4   a b1 b2 b3 b4 

v1  2.69 -1.99 -1.32 -0.88 -0.19   2.69 -1.99 -0.88  0.50  1.50 

v2  2.00 -1.93 -1.57 -0.80 -0.05   2.00 -1.93 -0.69  1.23  2.04 

v3  1.94 -2.18 -1.76 -0.59  0.10   1.94 -2.18 -1.76 -0.59  0.10 

v4  1.90 -2.96 -2.25 -1.00 -0.06   1.90 -2.96 -2.25 -1.00 -0.06 

v5  1.83 -2.51 -2.15 -0.70  0.37   1.83 -2.51 -2.15 -0.70  0.37 

v6  1.86 -2.69 -2.19 -1.08 -0.15   1.76 -2.69 -2.19 -1.08 -0.15 

v7  1.94 -2.65 -2.11 -0.78  0.44   1.54 -1.50 -0.65  0.78  1.95 

v8  1.74 -3.01 -2.53 -1.36 -0.48    1.74 -1.25 -0.05  1.22  2.35 

Note. For the n=4 condition, the item parameters for items v1-v4 were used to generate data. We 

show the item threshold (b) parameters instead of intercept (c) parameters to allow for clearer 

picture of the range of the latent trait covered by the items. However, the generating intercepts can 

be calculated as 𝑐 = −𝑎𝑏.  We assume strong measurement invariance, and so the same 

generating item parameters are used at each timepoint. 
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Table 3 

Growth Model Parameter Estimates for Specific Conditions within Simulation Study 1 

Condition Parameter Population 

True 

Scores 

Sum 

Scores 

Cross-

sectional 

Long. 

UniD. 

Long. 

MIRT 

True Slope = 0 

N=2000,  

J=4 items 

Latent Means       

 Intercept Mean 0.000 0.002 0.024 0.014 0.013 0.006 

 Slope Mean 0.000 -0.001 -0.001 -0.001 -0.001 0.004 

(Co)variance Estimates 
      

 Intercept Variance 0.470 0.478 0.289 0.277 0.277 0.459 

 Slope Variance 0.080 0.084 0.052 0.049 0.049 0.081 

 Covariance -0.066 -0.071 -0.043 -0.041 -0.041 -0.064 

N=2000,  

J=8 items 

Latent Means 
      

 Intercept Mean 0.000 0.002 0.001 0.001 0.001 0.004 

 Slope Mean 0.000 -0.001 -0.001 -0.001 -0.001 0.001 

(Co)variance Estimates 
      

 Intercept Variance 0.470 0.478 0.238 0.345 0.345 0.475 

 Slope Variance 0.080 0.084 0.042 0.060 0.060 0.082 

  Covariance -0.066 -0.071 -0.035 -0.051 -0.051 -0.068 

True Slope = 0.2 

N=2000,  

J=4 items 

Latent Means       

 Intercept Mean 0.000 0.002 0.003 0.002 0.002 0.005 

 Slope Mean 0.200 0.199 0.136 0.144 0.145 0.212 

(Co)variance Estimates 
      

 Intercept Variance 0.470 0.478 0.283 0.282 0.285 0.458 

 Slope Variance 0.080 0.084 0.045 0.047 0.047 0.080 

 Covariance -0.066 -0.071 -0.059 -0.052 -0.052 -0.065 

N=2000,  

J=8 items 

Latent Means 
      

 Intercept Mean 0.000 0.199 0.124 0.163 0.163 0.206 

 Slope Mean 0.200 0.002 0.003 0.002 0.002 0.003 

(Co)variance Estimates 
      

 Intercept Variance 0.470 0.478 0.233 0.348 0.347 0.475 

 Slope Variance 0.080 0.084 0.037 0.058 0.057 0.081 

  Covariance -0.066 -0.071 -0.048 -0.061 -0.060 -0.068 

True Slope = 0.5 

N=2000,  

J=4 items 

Latent Means       

 Intercept Mean 0.000 0.002 0.024 0.014 0.013 0.006 

 Slope Mean 0.500 0.499 0.277 0.324 0.326 0.526 

(Co)variance Estimates 
      

 Intercept Variance 0.470 0.478 0.268 0.287 0.284 0.460 

 Slope Variance 0.080 0.084 0.042 0.048 0.048 0.077 

 Covariance -0.066 -0.071 -0.081 -0.075 -0.073 -0.069 

N=2000,  

J=8 items 

Latent Means 
      

 Intercept Mean 0.000 0.002 0.020 0.010 0.008 0.005 

 Slope Mean 0.500 0.499 0.257 0.374 0.368 0.515 

(Co)variance Estimates 
      

 Intercept Variance 0.470 0.478 0.223 0.342 0.323 0.476 

 Slope Variance 0.080 0.084 0.034 0.056 0.054 0.078 

  Covariance -0.066 -0.071 -0.065 -0.080 -0.074 -0.070 
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Table 4 

Correlations between True and Estimated Scores by Timepoint and Model 

Time 1 Time 2 Time 3 Time 1 Time 2 Time 3 Time 1 Time 2 Time 3 Time 1 Time 2 Time 3

500 3 4 0 0.84 0.84 0.84 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.88 0.88

500 3 4 0.2 0.84 0.82 0.80 0.87 0.85 0.83 0.87 0.86 0.83 0.87 0.87 0.85

500 3 4 0.5 0.84 0.79 0.71 0.87 0.83 0.76 0.87 0.83 0.76 0.87 0.84 0.78

500 3 8 0 0.89 0.89 0.89 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

500 3 8 0.2 0.89 0.88 0.85 0.92 0.91 0.90 0.92 0.91 0.90 0.92 0.92 0.90

500 3 8 0.5 0.89 0.85 0.78 0.92 0.89 0.84 0.92 0.89 0.84 0.92 0.90 0.85

1000 3 4 0 0.84 0.84 0.84 0.87 0.87 0.87 0.87 0.87 0.87 0.88 0.88 0.88

1000 3 4 0.2 0.84 0.82 0.80 0.87 0.86 0.84 0.87 0.86 0.84 0.88 0.87 0.85

1000 3 4 0.5 0.84 0.79 0.71 0.87 0.83 0.76 0.87 0.83 0.76 0.88 0.84 0.78

1000 3 8 0 0.89 0.89 0.89 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

1000 3 8 0.2 0.89 0.88 0.86 0.92 0.91 0.90 0.92 0.91 0.90 0.92 0.92 0.90

1000 3 8 0.5 0.89 0.85 0.78 0.92 0.89 0.84 0.92 0.89 0.84 0.92 0.90 0.85

2000 3 4 0 0.84 0.84 0.85 0.87 0.87 0.87 0.87 0.87 0.87 0.88 0.88 0.88

2000 3 4 0.2 0.84 0.83 0.80 0.87 0.86 0.84 0.87 0.86 0.84 0.88 0.87 0.85

2000 3 4 0.5 0.84 0.79 0.72 0.87 0.83 0.76 0.87 0.83 0.76 0.88 0.84 0.78

2000 3 8 0 0.89 0.89 0.89 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

2000 3 8 0.2 0.89 0.87 0.86 0.92 0.91 0.90 0.92 0.91 0.90 0.92 0.92 0.90

2000 3 8 0.5 0.89 0.85 0.79 0.92 0.89 0.84 0.92 0.89 0.84 0.92 0.90 0.86

500 3 4 0 0.88 0.88 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

500 3 4 0.2 0.88 0.88 0.87 0.90 0.89 0.89 0.90 0.89 0.89 0.90 0.90 0.90

500 3 4 0.5 0.88 0.87 0.85 0.90 0.89 0.87 0.90 0.89 0.87 0.90 0.89 0.88

500 3 8 0 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

500 3 8 0.2 0.92 0.92 0.92 0.94 0.93 0.93 0.94 0.93 0.93 0.94 0.94 0.93

500 3 8 0.5 0.92 0.91 0.90 0.94 0.93 0.92 0.94 0.93 0.92 0.94 0.93 0.92

1000 3 4 0 0.89 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

1000 3 4 0.2 0.89 0.88 0.88 0.90 0.90 0.89 0.90 0.90 0.89 0.90 0.90 0.90

1000 3 4 0.5 0.89 0.87 0.85 0.90 0.89 0.87 0.90 0.89 0.87 0.90 0.90 0.88

1000 3 8 0 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

1000 3 8 0.2 0.92 0.92 0.92 0.94 0.94 0.93 0.94 0.94 0.93 0.94 0.94 0.93

1000 3 8 0.5 0.92 0.91 0.90 0.94 0.93 0.92 0.94 0.93 0.92 0.94 0.93 0.92

2000 3 4 0 0.88 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.91 0.90

2000 3 4 0.2 0.88 0.88 0.88 0.90 0.90 0.89 0.90 0.90 0.89 0.90 0.90 0.90

2000 3 4 0.5 0.88 0.87 0.85 0.90 0.89 0.87 0.90 0.89 0.87 0.90 0.90 0.88

2000 3 8 0 0.92 0.92 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

2000 3 8 0.2 0.92 0.92 0.92 0.94 0.93 0.93 0.94 0.93 0.93 0.94 0.94 0.93

2000 3 8 0.5 0.92 0.91 0.90 0.94 0.93 0.92 0.94 0.93 0.92 0.94 0.93 0.92

Mixed Item Difficulty Condition

Easy Item Difficulty Condition

Sum Scores Unidimensional - Long MIRTTime 

pointsN Items Gain

Unidimensional - T1 Only
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Table 5 

Growth Model Parameter Estimates for Simulation Study 2 

Condition Parameter Population 

True 

Scores 

Sum 

Scores 

Cross-

sectional 

Long. 

UniD. 

Long. 

MIRT 

N=2000,  

J=8 items 

Latent Means             
 Intercept Mean 0.000 0.001 0.001 0.001 0.001 0.004 
 Slope Mean 0.077 0.077 0.059 0.066 0.072 0.085 
 Quad. Mean -0.017 -0.018 -0.028 -0.022 -0.025 -0.020 
        

Variance Estimates       

 Intercept Variance 0.337 0.346 0.168 0.216 0.256 0.348 
 Slope Variance 0.172 0.177 0.08 0.107 0.127 0.168 
 Quad. Variance 0.018 0.017 0.008 0.010 0.011 0.015 
        

Covariance Estimates       

 Int. Lin. Covariance  0.016  0.008  0.004  0.001  0.001  0.010 
 Int. Quad. Covariance -0.010 -0.008 -0.005 -0.006 -0.007 -0.008 

  Lin. Quad. Covariance -0.026 -0.027 -0.012 -0.017 -0.02 -0.022 
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Table 6 

Parameter Estimates from Empirical Analyses Using Growth Mindset 

Parameter     Sum Scores Cross-

sectional 

Long. UniD. Long. MIRT 

   

    

Intercept Mean  -0.016 -0.039 -0.090 0.009 

  
(0.025) (0.020) (0.020) (0.021) 

Slope Mean  0.093 0.060 0.061 0.122 

  
(0.033) (0.026) (0.026) (0.022) 

Quad. Mean  0.003 0.004 0.003 -0.001 

  
(0.010) (0.008) (0.008) (0.007) 

  

    

Intercept Variance  0.381 0.236 0.229 0.491 

  
(0.040) (0.026) (0.025) (0.026) 

Slope Variance  0.235 0.106 0.106 0.231 

  
(0.081) (0.052) (0.051) (0.035) 

Quad. Variance  0.017 0.008 0.008 0.017 

  
(0.008) (0.005) (0.005) (0.003) 

  

    

Int. Lin. Covariance  -0.020 0.026 0.026 0.131 

  
(0.043) (0.027) (0.027) (0.021) 

Int. Quad. Covariance  -0.003 -0.011 -0.011 -0.041 

  
(0.012) (0.008) (0.008) (0.006) 

Lin. Quad. Covariance  -0.060 -0.026 -0.027 -0.055 

    (0.025) (0.016) (0.016) (0.010) 
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(1a) Approach 1: Cross-sectional IRT model for item response at time 1 

 

 

(1b) Approach 2: IRT model for item responses at all timepoints from one longitudinal cohort 

(data in long format) 
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 (1c) Approach 3: Longitudinal MIRT model for three timepoints of data 

 

 

 

(1d) Approach 4: Longitudinal MIRT model for three timepoints of data with specific factors 

 

 

 

Figure 1. Path diagrams for the four IRT calibration models considered in this study. Each box 

𝑦𝑡𝑖𝑗 represents an observed item response at time t from individual i to item j. For parsimony 

within this figure, we leave off the i subscript, so the notation within each observed item above is 

𝑦𝑡𝑗. For the two MIRT models, measurement invariance constraints are applied so that 𝑎1𝑗 =

𝑎2𝑗 = 𝑎3𝑗. 
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Figure 2. Average trajectory and variability of trajectories across 200 randomly selected simulees 

from the J=4, N=2000, gain=.5 condition.  
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Appendix 

 

Table A1 

Full Simulation Study 1 Results Across Conditions – Easy Items 

Condition Parameter Pop. 

True 

Scores 

Mean 

Scores 

Cross-

sectional 

Long. 

UniD. 

Long. 

MIRT 

N=500, True gain=0, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0, J=4 items Slope Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0, J=4 items Intercept Variance  0.47  0.47  0.46  0.28  0.27  0.27 

N=500, True gain=0, J=4 items Slope Variance  0.08  0.08  0.08  0.05  0.05  0.05 

N=500, True gain=0, J=4 items Covariance -0.07 -0.07 -0.07 -0.04 -0.04 -0.04 

N=500, True gain=0.2, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0.2, J=4 items Slope Mean  0.20  0.20  0.20  0.14  0.15  0.15 

N=500, True gain=0.2, J=4 items Intercept Variance  0.47  0.47  0.46  0.28  0.28  0.28 

N=500, True gain=0.2, J=4 items Slope Variance  0.08  0.08  0.08  0.04  0.05  0.05 

N=500, True gain=0.2, J=4 items Covariance -0.07 -0.07 -0.07 -0.06 -0.05 -0.05 

N=500, True gain=0.5, J=4 items Intercept Mean  0.00  0.00  0.00  0.02  0.01  0.01 

N=500, True gain=0.5, J=4 items Slope Mean  0.50  0.50  0.50  0.28  0.33  0.33 

N=500, True gain=0.5, J=4 items Intercept Variance  0.47  0.47  0.46  0.27  0.28  0.28 

N=500, True gain=0.5, J=4 items Slope Variance  0.08  0.08  0.08  0.04  0.05  0.05 

N=500, True gain=0.5, J=4 items Covariance -0.07 -0.07 -0.07 -0.08 -0.07 -0.08 

N=500, True gain=0, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0, J=8 items Slope Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0, J=8 items Intercept Variance  0.47  0.47  0.46  0.24  0.35  0.35 

N=500, True gain=0, J=8 items Slope Variance  0.08  0.08  0.08  0.04  0.06  0.06 

N=500, True gain=0, J=8 items Covariance -0.07 -0.07 -0.07 -0.04 -0.06 -0.06 

N=500, True gain=0.2, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0.2, J=8 items Slope Mean  0.20  0.20  0.20  0.13  0.17  0.17 

N=500, True gain=0.2, J=8 items Intercept Variance  0.47  0.47  0.46  0.23  0.35  0.35 
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N=500, True gain=0.2, J=8 items Slope Variance  0.08  0.08  0.08  0.04  0.06  0.06 

N=500, True gain=0.2, J=8 items Covariance -0.07 -0.07 -0.07 -0.05 -0.06 -0.06 

N=500, True gain=0.5, J=8 items Intercept Mean  0.00  0.00  0.00  0.02  0.01  0.01 

N=500, True gain=0.5, J=8 items Slope Mean  0.50  0.50  0.50  0.26  0.37  0.38 

N=500, True gain=0.5, J=8 items Intercept Variance  0.47  0.47  0.46  0.22  0.33  0.35 

N=500, True gain=0.5, J=8 items Slope Variance  0.08  0.08  0.08  0.04  0.06  0.06 

N=500, True gain=0.5, J=8 items Covariance -0.07 -0.07 -0.07 -0.07 -0.08 -0.09 

N=1000, True gain=0, J=4 items Intercept Mean  0.00  0.00  0.00  0.00 0.00 0.00 

N=1000, True gain=0, J=4 items Slope Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0, J=4 items Intercept Variance  0.47  0.47  0.46  0.28  0.27  0.27 

N=1000, True gain=0, J=4 items Slope Variance  0.08  0.08  0.07  0.05  0.04  0.04 

N=1000, True gain=0, J=4 items Covariance -0.07 -0.07 -0.06 -0.04 -0.04 -0.04 

N=1000, True gain=0.2, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0.2, J=4 items Slope Mean  0.20  0.20  0.20  0.14  0.15  0.15 

N=1000, True gain=0.2, J=4 items Intercept Variance  0.47  0.47  0.46  0.28  0.28  0.28 

N=1000, True gain=0.2, J=4 items Slope Variance  0.08  0.08  0.07  0.04  0.04  0.04 

N=1000, True gain=0.2, J=4 items Covariance -0.07 -0.07 -0.06 -0.06 -0.05 -0.05 

N=1000, True gain=0.5, J=4 items Intercept Mean  0.00  0.00  0.00  0.02  0.01  0.01 

N=1000, True gain=0.5, J=4 items Slope Mean  0.50  0.50  0.50  0.28  0.33  0.33 

N=1000, True gain=0.5, J=4 items Intercept Variance  0.47  0.47  0.46  0.26  0.28  0.28 

N=1000, True gain=0.5, J=4 items Slope Variance  0.08  0.08  0.07  0.04  0.04  0.04 

N=1000, True gain=0.5, J=4 items Covariance -0.07 -0.07 -0.06 -0.08 -0.07 -0.07 

N=1000, True gain=0, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0, J=8 items Slope Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0, J=8 items Intercept Variance  0.47  0.47  0.46  0.23  0.33  0.33 

N=1000, True gain=0, J=8 items Slope Variance  0.08  0.08  0.07  0.04  0.05  0.05 

N=1000, True gain=0, J=8 items Covariance -0.07 -0.07 -0.06 -0.03 -0.04 -0.04 

N=1000, True gain=0.2, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0.2, J=8 items Slope Mean  0.20  0.20  0.20  0.13  0.17  0.17 

N=1000, True gain=0.2, J=8 items Intercept Variance  0.47  0.47  0.46  0.22  0.34  0.34 

N=1000, True gain=0.2, J=8 items Slope Variance  0.08  0.08  0.07  0.03  0.05  0.05 
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N=1000, True gain=0.2, J=8 items Covariance -0.07 -0.07 -0.06 -0.04 -0.05 -0.05 

N=1000, True gain=0.5, J=8 items Intercept Mean  0.00  0.00  0.00  0.02  0.01  0.01 

N=1000, True gain=0.5, J=8 items Slope Mean  0.50  0.50  0.50  0.26  0.37  0.38 

N=1000, True gain=0.5, J=8 items Intercept Variance  0.47  0.47  0.46  0.22  0.32  0.34 

N=1000, True gain=0.5, J=8 items Slope Variance  0.08  0.08  0.07  0.03  0.05  0.05 

N=1000, True gain=0.5, J=8 items Covariance -0.07 -0.07 -0.06 -0.06 -0.07 -0.08 

N=2000, True gain=0, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=2000, True gain=0, J=4 items Slope Mean  0.00  0.00 0.00 0.00 0.00 0.00 

N=2000, True gain=0, J=4 items Intercept Variance  0.47  0.47  0.48  0.29  0.28  0.28 

N=2000, True gain=0, J=4 items Slope Variance  0.08  0.08  0.08  0.05  0.05  0.05 

N=2000, True gain=0, J=4 items Covariance -0.07 -0.07 -0.07 -0.04 -0.04 -0.04 

N=2000, True gain=0.2, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=2000, True gain=0.2, J=4 items Slope Mean  0.20  0.20  0.20  0.14  0.15  0.14 

N=2000, True gain=0.2, J=4 items Intercept Variance  0.47  0.47  0.48  0.28  0.29  0.28 

N=2000, True gain=0.2, J=4 items Slope Variance  0.08  0.08  0.08  0.05  0.05  0.05 

N=2000, True gain=0.2, J=4 items Covariance -0.07 -0.07 -0.07 -0.06 -0.05 -0.05 

N=2000, True gain=0.5, J=4 items Intercept Mean  0.00  0.00  0.00  0.02  0.01  0.01 

N=2000, True gain=0.5, J=4 items Slope Mean  0.50  0.50  0.50  0.28  0.33  0.32 

N=2000, True gain=0.5, J=4 items Intercept Variance  0.47  0.47  0.48  0.27  0.28  0.29 

N=2000, True gain=0.5, J=4 items Slope Variance  0.08  0.08  0.08  0.04  0.05  0.05 

N=2000, True gain=0.5, J=4 items Covariance -0.07 -0.07 -0.07 -0.08 -0.07 -0.08 

N=2000, True gain=0, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=2000, True gain=0, J=8 items Slope Mean  0.00  0.00 0.00 0.00 0.00 0.00 

N=2000, True gain=0, J=8 items Intercept Variance  0.47  0.47  0.48  0.24  0.35  0.35 

N=2000, True gain=0, J=8 items Slope Variance  0.08  0.08  0.08  0.04  0.06  0.06 

N=2000, True gain=0, J=8 items Covariance -0.07 -0.07 -0.07 -0.04 -0.05 -0.05 

N=2000, True gain=0.2, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=2000, True gain=0.2, J=8 items Slope Mean  0.20  0.20  0.20  0.12  0.16  0.16 

N=2000, True gain=0.2, J=8 items Intercept Variance  0.47  0.47  0.48  0.23  0.35  0.35 

N=2000, True gain=0.2, J=8 items Slope Variance  0.08  0.08  0.08  0.04  0.06  0.06 

N=2000, True gain=0.2, J=8 items Covariance -0.07 -0.07 -0.07 -0.05 -0.06 -0.06 
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N=2000, True gain=0.5, J=8 items Intercept Mean  0.00  0.00  0.00  0.02  0.01  0.01 

N=2000, True gain=0.5, J=8 items Slope Mean  0.50  0.50  0.50  0.26  0.37  0.37 

N=2000, True gain=0.5, J=8 items Intercept Variance  0.47  0.47  0.48  0.22  0.32  0.34 

N=2000, True gain=0.5, J=8 items Slope Variance  0.08  0.08  0.08  0.03  0.05  0.06 

N=2000, True gain=0.5, J=8 items Covariance -0.07 -0.07 -0.07 -0.07 -0.07 -0.08 
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Table A2 

Full Simulation Study 1 Results Across Conditions – Mixed Item Difficulties 

Condition Parameter Pop. 

True 

Scores 

Mean 

Scores 

Cross-

sectional 

Long. 

UniD. 

Long. 

MIRT 

N=500, True gain=0, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0, J=4 items Slope Mean  0.00  0.00  0.00  0.00  0.00  0.01 

N=500, True gain=0, J=4 items Intercept Variance  0.47  0.46  0.23  0.30  0.30  0.45 

N=500, True gain=0, J=4 items Slope Variance  0.08  0.08  0.04  0.05  0.05  0.08 

N=500, True gain=0, J=4 items Covariance -0.07 -0.06 -0.03 -0.04 -0.04 -0.06 

N=500, True gain=0.2, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0.2, J=4 items Slope Mean  0.20  0.20  0.14  0.16  0.16  0.21 

N=500, True gain=0.2, J=4 items Intercept Variance  0.47  0.46  0.23  0.30  0.30  0.46 

N=500, True gain=0.2, J=4 items Slope Variance  0.08  0.08  0.04  0.05  0.05  0.08 

N=500, True gain=0.2, J=4 items Covariance -0.07 -0.06 -0.04 -0.04 -0.04 -0.06 

N=500, True gain=0.5, J=4 items Intercept Mean  0.00  0.00  0.01  0.00  0.00  0.00 

N=500, True gain=0.5, J=4 items Slope Mean  0.50  0.50  0.32  0.37  0.38  0.52 

N=500, True gain=0.5, J=4 items Intercept Variance  0.47  0.46  0.23  0.26  0.29  0.46 

N=500, True gain=0.5, J=4 items Slope Variance  0.08  0.08  0.03  0.04  0.05  0.08 

N=500, True gain=0.5, J=4 items Covariance -0.07 -0.06 -0.05 -0.04 -0.05 -0.06 

N=500, True gain=0, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0, J=8 items Slope Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0, J=8 items Intercept Variance  0.47  0.46  0.23  0.36  0.36  0.48 

N=500, True gain=0, J=8 items Slope Variance  0.08  0.08  0.04  0.07  0.07  0.09 

N=500, True gain=0, J=8 items Covariance -0.07 -0.06 -0.04 -0.05 -0.05 -0.07 

N=500, True gain=0.2, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=500, True gain=0.2, J=8 items Slope Mean  0.20  0.20  0.14  0.17  0.18  0.21 

N=500, True gain=0.2, J=8 items Intercept Variance  0.47  0.46  0.23  0.35  0.36  0.48 

N=500, True gain=0.2, J=8 items Slope Variance  0.08  0.08  0.04  0.06  0.06  0.09 

N=500, True gain=0.2, J=8 items Covariance -0.07 -0.06 -0.04 -0.05 -0.06 -0.07 
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N=500, True gain=0.5, J=8 items Intercept Mean  0.00  0.00  0.01  0.00  0.00  0.00 

N=500, True gain=0.5, J=8 items Slope Mean  0.50  0.50  0.31  0.39  0.41  0.52 

N=500, True gain=0.5, J=8 items Intercept Variance  0.47  0.46  0.23  0.29  0.33  0.48 

N=500, True gain=0.5, J=8 items Slope Variance  0.08  0.08  0.04  0.06  0.06  0.09 

N=500, True gain=0.5, J=8 items Covariance -0.07 -0.06 -0.05 -0.05 -0.06 -0.07 

N=1000, True gain=0, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0, J=4 items Slope Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0, J=4 items Intercept Variance  0.47  0.46  0.23  0.30  0.30  0.46 

N=1000, True gain=0, J=4 items Slope Variance  0.08  0.08  0.04  0.05  0.05  0.07 

N=1000, True gain=0, J=4 items Covariance -0.07 -0.06 -0.03 -0.04 -0.04 -0.06 

N=1000, True gain=0.2, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0.2, J=4 items Slope Mean  0.20  0.20  0.14  0.16  0.16  0.21 

N=1000, True gain=0.2, J=4 items Intercept Variance  0.47  0.46  0.23  0.30  0.30  0.46 

N=1000, True gain=0.2, J=4 items Slope Variance  0.08  0.08  0.04  0.05  0.05  0.07 

N=1000, True gain=0.2, J=4 items Covariance -0.07 -0.06 -0.04 -0.04 -0.04 -0.06 

N=1000, True gain=0.5, J=4 items Intercept Mean  0.00  0.00  0.01  0.00  0.00  0.00 

N=1000, True gain=0.5, J=4 items Slope Mean  0.50  0.50  0.31  0.36  0.38  0.51 

N=1000, True gain=0.5, J=4 items Intercept Variance  0.47  0.46  0.23  0.27  0.29  0.47 

N=1000, True gain=0.5, J=4 items Slope Variance  0.08  0.08  0.03  0.04  0.05  0.08 

N=1000, True gain=0.5, J=4 items Covariance -0.07 -0.06 -0.05 -0.05 -0.05 -0.06 

N=1000, True gain=0, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0, J=8 items Slope Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0, J=8 items Intercept Variance  0.47  0.46  0.23  0.36  0.36  0.46 

N=1000, True gain=0, J=8 items Slope Variance  0.08  0.08  0.04  0.06  0.06  0.07 

N=1000, True gain=0, J=8 items Covariance -0.07 -0.06 -0.03 -0.05 -0.05 -0.06 

N=1000, True gain=0.2, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=1000, True gain=0.2, J=8 items Slope Mean  0.20  0.20  0.14  0.17  0.17  0.20 

N=1000, True gain=0.2, J=8 items Intercept Variance  0.47  0.46  0.23  0.35  0.35  0.47 

N=1000, True gain=0.2, J=8 items Slope Variance  0.08  0.08  0.04  0.06  0.06  0.08 

N=1000, True gain=0.2, J=8 items Covariance -0.07 -0.06 -0.04 -0.05 -0.05 -0.06 

N=1000, True gain=0.5, J=8 items Intercept Mean  0.00  0.00  0.01  0.00  0.00  0.00 
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N=1000, True gain=0.5, J=8 items Slope Mean  0.50  0.50  0.31  0.39  0.41  0.51 

N=1000, True gain=0.5, J=8 items Intercept Variance  0.47  0.46  0.23  0.29  0.33  0.47 

N=1000, True gain=0.5, J=8 items Slope Variance  0.08  0.08  0.03  0.05  0.05  0.08 

N=1000, True gain=0.5, J=8 items Covariance -0.07 -0.06 -0.05 -0.05 -0.05 -0.06 

N=2000, True gain=0, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=2000, True gain=0, J=4 items Slope Mean  0.00 0.00 0.00 0.00 0.00 0.00 

N=2000, True gain=0, J=4 items Intercept Variance  0.47  0.48  0.24  0.31  0.31  0.46 

N=2000, True gain=0, J=4 items Slope Variance  0.08  0.08  0.04  0.05  0.05  0.08 

N=2000, True gain=0, J=4 items Covariance -0.07 -0.07 -0.03 -0.04 -0.04 -0.06 

N=2000, True gain=0.2, J=4 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=2000, True gain=0.2, J=4 items Slope Mean  0.20  0.20  0.14  0.16  0.16  0.20 

N=2000, True gain=0.2, J=4 items Intercept Variance  0.47  0.48  0.24  0.30  0.31  0.46 

N=2000, True gain=0.2, J=4 items Slope Variance  0.08  0.08  0.04  0.05  0.05  0.08 

N=2000, True gain=0.2, J=4 items Covariance -0.07 -0.07 -0.04 -0.05 -0.05 -0.06 

N=2000, True gain=0.5, J=4 items Intercept Mean  0.00  0.00  0.01  0.00  0.00  0.00 

N=2000, True gain=0.5, J=4 items Slope Mean  0.50  0.50  0.31  0.36  0.38  0.51 

N=2000, True gain=0.5, J=4 items Intercept Variance  0.47  0.48  0.24  0.27  0.29  0.46 

N=2000, True gain=0.5, J=4 items Slope Variance  0.08  0.08  0.04  0.05  0.05  0.08 

N=2000, True gain=0.5, J=4 items Covariance -0.07 -0.07 -0.05 -0.05 -0.05 -0.06 

N=2000, True gain=0, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=2000, True gain=0, J=8 items Slope Mean  0.00 0.00 0.00 0.00 0.00 0.00 

N=2000, True gain=0, J=8 items Intercept Variance  0.47  0.48  0.24  0.37  0.37  0.48 

N=2000, True gain=0, J=8 items Slope Variance  0.08  0.08  0.04  0.06  0.06  0.08 

N=2000, True gain=0, J=8 items Covariance -0.07 -0.07 -0.04 -0.06 -0.06 -0.07 

N=2000, True gain=0.2, J=8 items Intercept Mean  0.00  0.00  0.00  0.00  0.00  0.00 

N=2000, True gain=0.2, J=8 items Slope Mean  0.20  0.20  0.13  0.17  0.17  0.20 

N=2000, True gain=0.2, J=8 items Intercept Variance  0.47  0.48  0.24  0.36  0.36  0.48 

N=2000, True gain=0.2, J=8 items Slope Variance  0.08  0.08  0.04  0.06  0.06  0.08 

N=2000, True gain=0.2, J=8 items Covariance -0.07 -0.07 -0.04 -0.06 -0.06 -0.07 

N=2000, True gain=0.5, J=8 items Intercept Mean  0.00  0.00  0.01  0.00  0.00  0.00 

N=2000, True gain=0.5, J=8 items Slope Mean  0.50  0.50  0.31  0.39  0.41  0.51 
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N=2000, True gain=0.5, J=8 items Intercept Variance  0.47  0.48  0.23  0.30  0.34  0.48 

N=2000, True gain=0.5, J=8 items Slope Variance  0.08  0.08  0.04  0.05  0.06  0.08 

N=2000, True gain=0.5, J=8 items Covariance -0.07 -0.07 -0.05 -0.05 -0.06 -0.07 
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Table A3 

Growth Mindset Items from the District Survey 

Item Wording 

My intelligence is something that I can't change very much.  

Challenging myself won't make me any smarter.  

There are some things I am not capable of learning.  

If I am not naturally smart in a subject, I will never do well in it.  

Note. All items are on a 5-point Likert (Agree or disagree) scale. 

 

 

 


