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Introduction 

Students exhibit differences in knowledge and preparation even in kindergarten (K) on the 

order of approximately 0.50 student test score standard deviations or six months of learning (Halle 

et al., 2009; Reardon, 2014; Shonkoff & Phillips, 2000). By the end of high school, these troubling 

disparities have only grown: Some students are ready to attend Ivy League colleges, while others 

struggle to pass exit exam tests of basic middle school math and reading skills. These disparate 

schooling endpoints launch students into adulthood with very different skillsets and opportunities 

and become a major contributor to the inequality in later life outcomes we see today in the US.  

In this paper, we explore whether this “fanning out” of achievement occurs while students 

are in school or on summer break, using a novel dataset with over 200 million student test scores 

for students spread across the US. The answer to this question has important implications for where 

researchers and policy makers look for opportunities to disrupt this stratification process.  

The field is generally aware of the phenomenon called summer learning loss (SLL)—that 

is, the fact that student learning slows during the summer. However key characteristics of SLL are 

not broadly established. For instance: Do students, on average, actually lose ground during the 

summer, or just exhibit no gain (i.e., flat)? What proportion of a student’s school year gain tends 

to be lost in the summer that immediately follows? Is the magnitude of SLL generally similar 

across students? Or can some actually maintain the school-year learning rate throughout the 

summer (or conversely, do some lose all of their school-year gains in the shorter summer period)? 

Does this vary by grade level? Do the same students tend to experience SLL year after year, or are 

losses in one summer unrelated to losses in other summers? Ultimately, how large of a role does 

the summer period play in where a student ends up in the achievement distribution? This paper 

addresses these questions.  

Even if, over the summer, students tend to lose ground, summers will only contribute to 

widening achievement disparities if students exhibit meaningful variation around the typical 
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summer pattern. We therefore adopt a different approach from prior SLL in which we focus on 

estimating the degree of variability across students in SLL, relative to school-year learning gains.  

Current Study 

There have been logistical challenges to studying SLL: The annual end-of-school-year 

statewide testing systems often used by quantitative policy researchers simply lack fall datapoint 

needed to separate learning gains between the school year and the summer. Opportunities to 

investigate SLL have necessarily been limited to more idiosyncratic samples (e.g., one city), 

specific years, or particular grades (e.g., only after grade K). To illustrate this point, Figure 1 

provides a summary of the years, sample sizes, grade levels, and geographic locations of data used 

in prior SLL research, alongside data for the current study.  

Data provided by the Northwest Evaluation Association (NWEA) allow us to estimate 

means and variances in SLL across 8 grade levels, using over 200 million test scores for nearly 18 

million students in 7,500 districts across all 50 states in a very recent time period (2008 through 

2016). We use this powerful dataset in a hierarchical student growth modeling framework to 

characterize the contribution of SLL to end-of-school achievement disparities. Specifically, we 

answer the following four questions:  

(1) On average, how do average learning gains during the school year compare to gains/losses 

during the summer across grade levels?  

(2) Of more relevance to the current investigation, how much do students vary in terms of how 

much they gain or lose?  

(3) Do the same students tend to exhibit summer learning loss year after year, or are these 

gains/losses randomly distributed?  

(4) What proportion of the variance in end-of-school outcomes arises during the summer? 

It should be noted that a different, major focus of SLL research has been to document its 

role in producing racial achievement gaps. Given the importance of that question, as well as and 

some of the methodological difficulties (see e.g., Quinn (2014) for a discussion), that crucial topic 

necessitates its own, separate, and full investigation. The current paper simply has a different goal: 
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To update the existing knowledge base about overall 1st through 8th grade school year learning 

gains and subsequent summer loss patterns, document the degree of variability in those patterns, 

and characterize the extent to which end-of-school achievement disparities arise during summers.  

Students’ test score trajectories follow a zig-zag pattern1 of learning gains and losses 

between 1st and 8th grade that ultimately add up to how unequal outcomes are across students by 

the end of that period. This pathway between where a student starts and ends can be partitioned 

into two parts: gains made during the school years and gains/losses during the intervening 

summers. We find that, on average, 19 percent of a student’s pathway from their 1st to 8th grade 

test score arises during the summers. For some students, this number is closer to 30 percent. Given 

that the summer is only about a quarter of a calendar year, we conclude that summers play an 

oversized role in 8th grade achievement inequality. With respect to the questions posed above, we 

do find that some students maintain their school-year learning rate throughout the summer, while 

others can lose almost as much ground as they had gained in the preceding school year. Ultimately, 

we show that—even if all the inequality in school-year learning rates could be entirely eliminated, 

students would still end school with very different achievement levels due to SLL alone.  

In what follows, we first situate the contributions of the current study within existing SLL 

literature. Next, we introduce this remarkable dataset and how it compares to the broader U.S. 

public school population. We also describe a significant primary data collection activity 

undertaken to address a methodological concern in SLL research about the dates on which tests 

are taken (more on this below). In the Methods section, we present the specification of the 

multilevel model and the key parameters it estimates. The subsequent Results section is organized 

by the four research questions introduced above. The Conclusion provides a reflection on the 

findings, the study limitations, and implications for future research.   

                                                 
1 Look ahead to Figure 2 for a hypothetical illustration of that zig-zag pattern. 
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Evidence on SLL 

 

Children’s Summer Time and Experiences 

Research has documented that children experience vastly different home environments 

prior to formal schooling (Gilkerson & Richards, 2009; Kaushal, Magnuson, & Waldfogel, 2011; 

Kornrich & Furstenberg, 2013), and further that this pre-school time leads to sizeable achievement 

differences that are apparent on day one of kindergarten (Lee & Burkam, 2002; Magnuson, 

Meyers, Ruhm, & Waldfogel, 2004). It is often overlooked, however, that children spend much of 

their school-age years outside of school, as well. The majority of this time is concentrated in the 

summer months—a time when schools play little to no direct role in the organization of children’s 

time use and activities. Instead, children return to full-time care of their families during the 

summer, and families have vastly different options and preferences for how children spend this 

time. In fact, the variety of environments and activities children spend their time on during the 

summer is likely much greater than during school (Gershenson, 2013). It is possible that student 

achievement gaps grow primarily during these summer months, when child experiences are 

probably most diverse. 

Research on Summer Learning Loss 

 Much has been written about SLL (see e.g., Gershenson (2013) for a particularly thorough 

recent overview; or Cooper, Nye, Charlton, Lindsay, and Greathouse (1996) for a meta-analysis 

across early studies). Today, there is a common understanding among policy-makers, researchers, 

and practitioners that, during the summer, students lose some knowledge and skills acquired during 

the school year. The seminal research on summer setback comes from two key studies: Heyns’ 

study of the summer after 6th grade for about 3,000 students in 42 Atlanta schools from 1970 to 

1972 (Heyns, 1978), and Entwisle and Alexander’s study of the summers after grades 1 and 2 for 
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about 750 students in 20 Baltimore schools from 1982 to 1984 (Entwisle & Alexander, 1992). 

These studies documented the now-accepted conclusion that, on average, students tend to learn at 

slower rates during the summer. Heyns found that average 6th grade school year gains in Atlanta 

were positive (about 60 percent of a national norm for one year of achievement gains), while 

summer gains were either flat or very modestly negative, depending on cohort. Entwisle and 

Alexander (1992) used a multilevel, quadratic individual growth curve model to document slower 

summer (versus school-year) learning. The authors have continued to follow their Baltimore 

sample through adulthood and have found that early differences in summer learning are predictive 

of later life outcomes such as high school completion and college-going (Alexander, Entwisle, & 

Olson, 2007; Entwisle & Alexander, 1990; Entwisle & Alexander, 1992; Entwisle, Entwisle, & 

Olson, 2001).  

The findings from these studies have become the definitive word on summer setback in the 

literature, raising awareness of the phenomenon and the role it plays in growing educational 

inequality. A series of studies have followed that examined SLL in specific locations (e.g., 

Allinder, Fuchs, Fuchs, & Hamlett (1992) in 2 rural schools around 1990; Borman, Benson, & 

Overman (2005) with about 300 students in Baltimore high poverty schools; Skibbe, Grimm, 

Bowles, & Morrison (2012) with about 380 students in 1 suburban Midwest town). That said, it 

has been unclear whether the results from those early studies would either generalize outside of 

their local contexts or to a vastly different educational landscape up to forty years later.  

A handful of more recent studies have used the Early Childhood Longitudinal Study 

Kindergarten Class (ECLS-K) data from 1998-99 to at least move to a national sample in a more 

(Benson & Borman, 2010; Burkam, Ready, Lee, & LoGerfo, 2004; Downey, von Hippel, & Broh, 

2004; Downey, von Hippel, & Hughes, 2008; Quinn, 2014). However, this dataset only covers one 
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summer between K and 1st grade nearly two decades ago for one-third of the ECLS-K sample. 

Unfortunately, the ECLS-K data set does not provide an opportunity to observe if SLL increases 

or decreases as students progress through school. 

In short, the existing SLL research base has been constrained by the availability of data. 

See Figure 1 for a summary of the data used across 12 key SLL studies. Figure 1 highlights how 

unique the current dataset is, relative to the limitations imposed by prior data. For instance, none 

of the data listed in Figure 1 are from the last decade—a time period with a significant amount of 

experimentation with teacher and school policies (e.g., high stakes accountability)—nor do they 

cover students in later elementary and middle school grades. Most datasets used previously have 

several hundred to a few thousand students (the largest dataset includes about 23 thousand 

students), compared to the over 17 million students for whom we observe test scores.  

In sum, the extant research on summer learning loss took an important leap forward in the 

late twentieth century, and it now seems to be experiencing a resurgence of interest, particularly 

spurred by the availability of the ECLS-K data. This new work has sought to build upon the 

methods used in prior work (e.g., taking into account test timing), update the evidence to the late 

1990s, and to cover a nationally representative sample (at least of kindergarteners).  

The current paper continues in this tradition, building off the various methodological 

advances put forth in this domain. We also seek to contribute in a few additional, unique ways. 

First, NWEA’s Measures of Academic Progress (MAP) tests are designed to be vertically-scaled 

assessments of math and reading achievement, which facilitates an examination of student growth 

across grades. As a result, some of the challenges documented by Quinn (2014) in deciding how 

to model the “learning gain” outcome are of less concern in this dataset. In addition, the NWEA 

data comes from the 2008 through 2016’s post-accountability era—a time in which it is at least 
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conceivable that the dynamics of access to quality schooling have changed. We also implement a 

set of multi-level models that we think connect more clearly to the central research questions in 

this domain: The coefficients (“fixed effects” in the language of HLM) correspond to school-year 

gains and summer losses, while the variance components allow us to characterize a plausible range 

of gain/losses one should expect across students during those periods. These variance components 

connect directly to our primary research question: The larger the variation in summer losses across 

students, relative to the school year gains, the more summers are the time when end-of-school 

achievement disparities arise. 

Data and Sample 

NWEA Data 

The data for this study comes from the NWEA’s MAP assessment. The dataset contains 

math and reading scores based on a computer adaptive test designed to serve as part of a formative, 

benchmarking data system, purchased by about 7500 districts across all 50 states in the U.S. The 

MAP assessment is used as a supplementary tool to aid schools’ in improving their instruction and 

meeting students’ needs, not as the high-stakes test of record. Because the MAP assessment is 

intended to monitor students’ progress throughout the school year, it is administered in both the 

fall and the spring.2 The MAP test is scored using a vertical and interval scale, which the NWEA 

calls the RIT scale. In theory, the vertical scale allows comparisons of student learning across 

grades and over time, while the interval scale ensures that a unit increase in a student’s score 

represents the same learning gain across the entire distribution. The vertically-scaled nature of this 

outcome data is essential to our ability to examine differences in achievement disparities as 

students move through grade levels. However, it is worth noting that vertical scaling is difficult to 

                                                 
2 It is also administered in the winter by some districts, however that data is not used in the current analysis.  
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achieve and hard to verify (Briggs, 2013; Briggs & Weeks, 2009). Therefore, our findings 

regarding changes across grades rely on assuming that NWEA’s vertical scale is valid. However, 

much of the paper concerns itself with comparing learning gains in the same grade (a given school-

year relative to the subsequent summer).           

The full dataset used for the current study comes from 7,685 U.S school districts that 

administered the MAP assessment during the nine years between 2008 and 2016. Different districts 

opt to administer the MAP in different grades, however the NWEA full data includes 203,234,153 

test scores for 17,955,222 million students who took a test between grades K and 11th grade. The 

dataset includes students’ race and gender, their math and reading MAP scores, number of items 

attempted and correctly answered, duration of the test, grade of enrollment, and the date of test 

administration.  The file does not include indicators for whether the student is an English Language 

Learner, belongs to the federal Free- and Reduced-Price Lunch program, or receives special 

education services.  

Adjustments to NWEA RIT Scores 

Students do not take MAP tests exactly on the first and last day of school—in fact, students 

often take these tests 3 to 6 weeks before/after the school year starts/ends. As a result, some of the 

time between the spring and fall administrations of the test—what one would mislabel as summer 

time—is actually spent in school. While the NWEA dataset does include the test date, crucially, it 

does not include school-year start or end dates to know exactly how much this occurs.  

We therefore conducted a large-scale data collection effort to record the start- and end-date 

in every district in a subset of 11 states with the greatest use of MAP assessments. We found 

23,223 school year start dates and 20,807 school year end dates—about 77 percent of the district-

year calendar dates in those 11 states from 2008 to 2015. In later years, NWEA also began to 
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collect school-year start and end dates. Together, these efforts allowed us to collect actual calendar 

start/end dates for 50.3 percent of the observed school-years for the entire NWEA dataset. Based 

on that data, we also extrapolate likely dates for other districts. We then use this calendar data to 

make a linear projection of each students’ score on the first and last day of the school year. For 

more information about this process, including a description of our approach to collecting this 

data, the percent of actual dates recovered, our extrapolation process, our score projection process, 

and how study results differ when using observed scores instead of projected scores, see Appendix 

A. For fall ELA scores, the correlation between observed and projected RIT scores is 0.996, with 

an RMSE of 2.3 points.  

Figure 2 illustrates how even small changes in estimated scores using projection methods 

could have a large impact on estimating summer learning rates.3 Figure 2 presents two hypothetical 

students as they progress through school between January 2008 and January 2012. The first 

student’s observed scores—and their test dates—are shown in orange. In dashed green, we project 

the student’s achievement scores linearly based on their school-year learning rate. The green line 

connects the student’s projected achievement on the last day of school to the projected achievement 

on the first day of school after that summer. In some cases, the summer learning rate estimated in 

the absence of school calendar information is positive, while learning rate is actually negative once 

the projections are used. The results are similar for the second student (red solid= observed scores, 

blue dashed= projected scores). The main takeaway here is that the linear projection process—

though it produces scores strongly correlated with the observed scores—could have a profound 

                                                 
3 Because the summer learning rate is estimated off of just two points—the first and last day of school—

the slope between those points is quite sensitive to even minor adjustments. Note that the method we 

describe assumes that students learn just as much on days in May as the do in, say, February. While there 

is some evidence that learning rates are relatively linearly within the school year (Fitzpatrick, Grissmer, & 

Hastedt, 2011), there are also reasons to question this assumption, especially given anecdotal reports that 

the intensity of school activities slows after spring standardized test are given. 
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impact on the estimated summer learning gain/loss. Throughout this paper, we therefore use the 

projected RIT scores in favor of the observed RIT scores. However, in Appendix A, we reconduct 

the analyses using observed scores in place of projected scores and replicate the figures in this 

paper that capture the main findings. 

Analytic Sample 

 

For the current analysis, we first restrict the NWEA sample to students observed in grades 

1 through 8 (because these are the grades with most complete coverage) and to the 89 percent of 

those students who neither repeat or skip grades. In our preferred models, we also restrict the 

sample to a “balanced panel”—that is, the subset of students who possess test scores for the full 

grade range being included in the model. For instance, if we examine test score patterns between 

1st through 5th grade in a given model, only students who have both fall and spring test scores in 

every grade between 1st and 5th grade (that is, a full vector of all 10 reading test scores) will be 

included in the sample. While this is quite restrictive sample limitation, it ensures that our findings 

cannot be conflated with compositional changes from one time point to the next. In Appendix B, 

we replicate our primary findings on a less restrictive sample by running models with only 3 

consecutive grades at a time (e.g., grades K through 2, grades 3 through 5, etc.). In these models, 

more students are included because the vector of required test scores is much shorter. These two 

samples have different advantages in terms of internal and external validity. Ultimately, however, 

results are relatively consistent (see Appendix B).   

In Table 1, we compare the demographic descriptives for the students, schools, and districts 

from 4 groups: The population of U.S. public schools (from Common Core of Data), the entire 

population of NWEA test takers, and the subset of students who meet the less restrictive inclusion 

criteria (for Appendix B), and the more restrictive inclusion criteria for our preferred results. See 
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Table 1 (for simplicity, we conduct this comparison in the 2011-2012 school year). First, recall 

that that a student-level indicator of free/reduced-price lunch (FRPL) status is not available in the 

NWEA dataset. However, at the school level, the mean percent of students in a school who are 

FRPL-eligible is very similar across the four groups: 50 percent both nationally and in NWEA 

universe of schools, 48 percent in the larger Appendix B sample, and 51 percent in the more 

restrictive, primary analytic sample. In many ways, the NWEA sample reflects the U.S. public 

school population. For instance, it is similar in terms of percentage of students identified as Black, 

Asian, White, and male. In addition, the majority of U.S. public schools are in rural geographic 

codes, followed by suburban and rural geographies, and this ordering also holds in NWEA. Many 

of the district characteristics are also quite similar.  

To consider potential (limitations of) generalizability, we point out that the largest 

differences between the U.S. public school population and the NWEA universe are that (a) the 

NWEA sample has a lower percentage of Hispanic students, (b) the average NWEA school has 

somewhat smaller mean enrollment, and (c) the NWEA districts tend to have more schools in 

them, have a lower percentage of FRPL students, and are less likely to be rural. What is also of 

note, however, is the sheer number of students in the NWEA universe in 2012 alone. NWEA 

students make up more than 11 percent of the entire K-12 public school population in 2012. NWEA 

data is available in nearly 37 percent of all U.S. public schools and in over half of all districts. This 

population is large enough to be of interest in its own right.  

Finally, we examine how the analytic sample limitations affect the characteristics of the 

NWEA students included in the models (compare the right three columns of Table 14). The final 

column reflects the requirements for inclusion in the balanced panel. For the most part, the analytic 

                                                 
4 The analytic samples in this paper are first limited to NWEA students observed in grades 1 through 8, 

hence the large drop in sample size between the full NWEA sample and the Appendix B analytic sample. 
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restrictions do not dramatically alter the descriptive profile of included NWEA students, schools 

or districts. However, the primary analytic sample has a higher percentage of white students than 

the NWEA full dataset (60 percent versus 53 percent), and the schools tend to be a little smaller 

(mean enrollment of 391 versus 486) and are less likely to be suburban. 

Methods 

We adopt a multilevel model to estimate an individual learning trajectory for each student 

as they progress through sequential school years and summers. We then look across students to 

estimate how much students tend to gain, on average, during the school year versus what they 

typically lose during the summer. A multilevel modeling approach also allows us to estimate the 

variation in these gains/losses across students. Because estimates from such a model are 

empirically Bayes shrunk, we believe these are conservative estimates of student-level variances 

and therefore preferable to simply calculating the raw standard deviation of summer gains, which 

almost certainly reflect a great deal of measurement error (Raudenbush & Bryk, 2002).    

Longitudinal Multi-Level Models 

We use a two- level random effects (hierarchical) model, in which the outcome of interest 

is a test score, 𝑆𝑐𝑜𝑟𝑒𝑡𝑖, for student i at grade-semester t. In our preferred models, we separately 

model scores in 1st through 5th grade (students included here must have all 10 math score 

outcomes) and then in 5th through 8th grade5 (again, students must have all 6 test scores in these 

grades). For brevity, we present the model (Eq. 1) for math scores from grade 6 through grade 8. 

These six repeated observations (L1) are nested within students (L2):  

 

                                                 
5 We include 5th grade in both panels to informally check how similar 5th grade estimates are across the models. 
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Level One: Repeated Observations of Students (i) across Grade-Sems (t) 

𝑆𝑐𝑜𝑟𝑒𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖(𝑠𝑐ℎ𝑦𝑟6𝑡𝑖) + 𝜋2𝑖(𝑠𝑢𝑚𝑎𝑓6𝑡𝑖) +  𝜋3𝑖(𝑠𝑐ℎ𝑦𝑟7𝑡𝑖) + 𝜋4𝑖(𝑠𝑢𝑚𝑎𝑓7𝑡𝑖) +  

 𝜋5𝑖(𝑠𝑐ℎ𝑦𝑟8𝑡𝑖) + 𝜋6𝑖(𝑠𝑢𝑚𝑎𝑓8𝑡𝑖) + 𝜀𝑡𝑖  where 𝜀𝑡𝑖~𝑁𝑖𝑖𝑑(0, 𝜎) 

  

Level Two: Students (i) 

𝜋0𝑖 = 𝛽00 + 𝑟0𝑖  where 𝑟0𝑖~𝑁𝑖𝑖𝑑(0, 𝜏0,0) 

𝜋1𝑖 = 𝛽10 + 𝑟1𝑖  where 𝑟1𝑖~𝑁𝑖𝑖𝑑(0, 𝜏1,1) 

⋮ 

𝜋6𝑖 = 𝛽60 + 𝑟6𝑖  where 𝑟6𝑖~𝑁𝑖𝑖𝑑(0, 𝜏6,6)     Eq (1) 

 

At L1, students’ growth trajectories are modeled with a set of dummy variables—𝑠𝑐ℎ𝑦𝑟6𝑡𝑖, 

𝑠𝑢𝑚𝑎𝑓6𝑡𝑖, 𝑠𝑐ℎ𝑦𝑟7𝑡𝑖, 𝑠𝑢𝑚𝑎𝑓7𝑡𝑖, etc.—for each grade-semester. They are each coded as 1 if the 

observation occurred on or after the ending timepoint for the period.6 This coding scheme may at 

first seem confusing, but it has the major advantage of giving the level-one coefficients intuitive 

meaning that now match the variable names: They represent an individual student i's grade-specific 

school-year gain or grade-specific summer gain/loss. For example, 𝜋1𝑖—the coefficient on 

𝑠𝑐ℎ𝑦𝑟6𝑡𝑖—captures student i's 6th grade school-year learning gain. The coefficient on 𝑠𝑢𝑚𝑎𝑓6𝑡𝑖 

captures student i's summer after 6th grade gain/loss.  These coefficients are now the very learning 

gains/losses we are interested in estimating for each student. We allow all of the level-one 

coefficients 𝜋0𝑖 through 𝜋6𝑖 to vary randomly at the student level, and we assume that the level-

two errors (𝑟0𝑖 through 𝑟6𝑖) are normally distributed with a mean of zero and a constant variance 

given by 𝜏0,0 through 𝜏6,6. These models estimate the parameters we need to answer each of our 

research questions, in turn.7  

                                                 
6 For example, 𝑠𝑐ℎ𝑦𝑟6𝑡𝑖 takes a value of 1 at the end of 6th grade (i.e., grade six spring test score) and 

remains a 1 for all observations thereafter. And 𝑠𝑢𝑚𝑎𝑓6𝑡𝑖 takes a value of 1 at the end of the summer after 

6th grade (i.e., grade seven fall test score) and remains a 1 for all observations after. 
7 The parameters are presented with a focus on their substantive meaning in the Results section, but for 

those interested in a more formal roadmap between research questions and parameters: For RQ1 concerning 

mean gains/losses, we focus on the 𝛽 coefficients. For RQ2 concerning student-level variation in 

gains/losses, we interpret the 𝝉 variance parameters. For RQ3 concerning whether the same students tend 
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Results 

 

(RQ1) Average Students’ School-Year vs. Summer Learning Gains/Losses across Grades 

Throughout the Results section, we present findings both formally (i.e., point estimates in 

tables) and visually to make takeaways as tangible as possible. For instance, to address this first 

question, we present the 𝛽 coefficients (or “fixed effects” in the language of HLM) in Table 2 

(ELA) and Table 3 (math) because, substantively, they capture mean gains/losses in each grade 

and the summer after. These 𝛽 coefficients are also graphed in Figure 3 as mean growth 

trajectories. To best contextualize the findings about summer experiences, we first set the stage 

with a discussion of the magnitude of school-year learning gains.  

During school years. Beginning with ELA school-year gains (left column of Table 2), we 

find that students’ school year learning gains are largest in the early grades and generally diminish 

over time. This is depicted in Figure 3 with blue, dashed lines. For instance, students gain on 

average 23.7 ELA test score points in 1st grade, 18.5 points in 2nd grade, 13.3 points in 3rd grade, 

and so on. By 8th grade, the average ELA learning gain on NWEA’s RIT scale is just 4.4 points. 

We observe a very similar pattern for math (left column of Table 3). In all grade levels, the average 

student gains—as opposed to loses—ground during school years. This suggests that students 

accumulate knowledge over time during school years as measured by the NWEA MAP test.  

During summers. The pattern of mean summer learning gains/losses—the 𝛽 coefficients 

in the right column of Table 2 and Table 3—are shown as solid red lines in Figure 3. Summer 

estimates differ from school-year gains in two important ways. First, in both ELA and math, the 

summer coefficients between 1st and 8th grade are negative and tend to be smaller in magnitude. 

                                                 
to lose ground summer after summer (take, for example, the relationship between losses in the summers 

after 6th vs. 7th grade), we correlate students’ empirical Bayes shrunken estimates of 𝜋2𝑖 and 𝜋4𝑖 (for this 

example, the covariance is 𝝉𝟐,𝟒
7). For RQ 4, we make use of the student-level Bayes shrunken residuals. 
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For instance, the average ELA loss in the summer after 1st grade is -6.6 test score points, -3.9 in 

summer after 2nd, -3.4 in the summer after 3rd, and falls to a low of -0.9 by the start of grade 8. 

In math, the mean summer learning estimates are also negative and of similar magnitude. An 

implication here is that, depending on grade, the average student loses between 17 and 28 percent 

of their school year ELA gains (a 9-month period) during the following summer (a 3-month 

period). In math, the relative losses are a little larger: The average student loses between 25 and 

34 percent of each school year gain during the following summer.  

The second way in which summer estimates differ from their school-year counterparts is 

that the magnitude of mean summer learning losses does not decrease over time to the same degree 

as school year learning. Put differently, although mean school year gains in ELA fall from 23.7 to 

4.4 across grades, mean summer losses stay within a tighter range of -6.6 to -0.9.    

Turning to the visual representation of these findings in Figure 3, we consistently see a zig-

zag pattern at every grade level, though the intensity of gains/losses flattens at higher grades. These 

results generally confirm the notion that summers can be characterized as a time when, on average, 

student learning slows or slides backwards. These findings differ somewhat from previous work 

in the apparent magnitude of the phenomenon. For instance, Alexander, Entwisle, and Olson 

(2001) found a strong seasonal pattern to learning gains in their Baltimore sample from the 1980s. 

However, they find that average learning rates during elementary grade summers slow 

dramatically but do not actually flatten or become negative. In other words, they find that learning 

during the summer slows but remains slightly positive. Downey et al. (2004), on the other hand, 

use more recent ECKS-K:1999 data and find that students neither gain nor lose ground during the 

summer after K (i.e., flat). While all three data sources—BSS, (1980s), ECLS-K (1999) and the 

current data (2008-2016)—show evidence that learning rates differ between summers and school 
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years, ours is the only one which shows consistent evidence of mean learning losses during the 

summer at every grade level. 

(RQ2) Variation in Students’ School-Year vs. Summer Learning Gains/Losses, by Grade 

It is important to recognize that the trends illustrated in Figure 3 only tell us one part of the 

story: the seasonal learning patterns for the average student. However, achievement disparities are 

driven by differential learning patterns, and so we now focus on how students vary on both school-

year and summer learning gains/losses. We are particularly interested in determining whether 

student growth trajectories vary more during school years or summers.  

During school years. We begin with an examination of variability in school-year learning 

across students. Also reported in the first column of Table 2 (ELA) and Table 3 (math) are the 

estimated standard deviations (SDs) of learning gains/losses across students in and after each grade 

(i.e., the square root of the diagonal elements of the tau matrix). As an example, while we saw 

before that the average student gain in 1st grade ELA was 23.7 points, students also typically differ 

from this mean by 9.7 points, suggesting a notable range across students in 1st grade school years 

gains. To provide context for the magnitude of this variability, under the assumption of normality 

across students (Raudenbush & Bryk, 2002), we construct a 95 percent plausible value range 

(“PVR”) for learning gains across students. These are also reported in Table 2 (ELA) and Table 3 

(math) beneath the corresponding student SD. To follow up with the example of ELA gains in 1st 

grade, we expect that 95 percent of students would have an average learning gain between 4.4 and 

42.7 ELA test score points. Therefore, in 1st grade, students at the high end of the PVR gain about 

80 percent more than the average student.  

Estimates of the standard deviation of school-year learning gains across students are 

relatively consistent across school years and subjects, generally in the range of 6 to 10 test score 
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points. In grades that exhibit smaller average school year gains, this variation implies larger 

discrepancies across students. For instance, in 8th grade when average growth is only 4.4 test score 

points during the school year, we see a 95 percent PVR across students of -7.0 to +15.9 points. 

Here, students at the top of this PVR will experience nearly four times larger gains than the average 

student. Students at the low end of that same PVR, however, are actually losing ground during 8th 

grade.  

To juxtapose mean gains/losses with variation around them, we calculate the ratio of the 

variation (SD) across students for each learning gain to the mean learning gain. Larger ratios 

indicate greater variability, relative to the mean gain. In 1st grade ELA, that ratio is about 0.41 

(9.7 over 23.7), indicating that the SD is a little less than half the size of the mean gain. In ELA, 

that ratio grows slowly across grades and reaches 1.3 in grade 8 (that is, the SD is now about 30 

percent larger than the mean). The ratio also increases across grades in math, but less dramatically 

from 0.40 in 1st grade to 0.91 in 8th grade. However, the fact that the relative variability in learning 

gains grows as students progress through school may suggest that inequities in achievement 

accumulate to some extent during school years as students who are underprepared are being left 

further and further behind with each successive grade.  

 During summers. While the variability in school-year patterns are interesting in and of 

themselves, our main interest lies in whether the summer gains/losses vary more than gains in the 

school year periods. This has direct implications for our understanding of when discrepancies in 

student achievement arise across the course of students’ school-age years. Turning to the second 

columns of Table 2 (ELA) and Table 3 (math), we see that the SD for a given summer tends to be 

a little smaller than the SD in the preceding school year (with the exception of 1st grade). For 

instance, in 3rd grade math, the SD is 6.6 in the school year and 3.6 in the following summer. 



18 
 

However, in a relative sense, the summer SDs are much larger with respect to means. In ELA, the 

SD-to-mean ratios described above are much larger in summers, ranging from 1.4 to as high as 

5.2. A ratio of 5.2 indicates that the SD is over five times larger than the mean (recall that the 

largest such ratio during a school year was 1.4). In math, we also see that summer ratios, which 

range from 0.8 to 2.3 are larger than school-year ratios (ranging from 0.40 to 0.91). Keep in mind 

that this larger summer variation is arising in a comparatively shorter time (9 versus 6 months).  

The PVRs are large for summer learning loss. Take 2nd grade math as an example:  

Summer learning loss in grade 2 for math (second column of Table 3) ranges from -16.3 to +6.8. 

While students at the top of that PVR are gaining, during the summer, another 32 percent of 

average growth from the preceding 2nd grade school year (6.8 over 18.6), students at the bottom 

of the PVR will lose during the summer just as much as the typical student gained in 2nd grade. 

Looking across all grades in ELA, we find that students at the top of the summer loss PVR will 

gain during the summer between 45 to 154 percent of the mean growth in the preceding grade (12 

to 86 percent for math). However, students at the bottom of the summer loss PVR will lose during 

the summer between 93 to 194 percent of the mean growth in the preceding grade (73 to 136 

percent for math). In sum, some students experience accelerated learning during the summer, while 

others lose nearly all of their gains from the preceding school year.  

The takeaways for RQ2 are also illustrated visually in Figure 4 (ELA) and Figure 5 (math), 

wherein we present box plots of individual students’ empirical Bayes estimated learning gains and 

losses in each school year and summer. These concisely capture the essence of what is presented 

in the tables: Larger gains during school years that diminish across grades, smaller average losses 

during summers that are more consistent is magnitude, but real variability around typical 

gains/losses. In Appendix B, we replicate Figure 4 (ELA) and Figure 5 (math) using results from 
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models using a shorter three-grade increment. Though the data is sparser before 1st and after 9th 

grade, we include those grades in Appendix B.    

 In sum, students certainly appear to vary in terms of how much they learn during the school 

year, but most students tend to exhibit some growth in test scores while in school. However, the 

picture in the summer is quite different. While our results re-document the known mean summer 

learning loss phenomenon, this finding obscures a more problematic pattern: For some as-yet 

unknown reason, certain students can gain at a faster rate in the summer than the mean rate in the 

preceding school year, while other students could lose most of what is typically gained.  

(RQ3) Student-Level Correlation of Summer Gains/Losses across Summers  

To this point, we have highlighted important variability in summer learning patterns across 

students. However, if that phenomenon occurs to students random—that is, a student might gain 

in one summer and then randomly lose in the next—then the contribution of summer learning loss 

to end-of-school achievement disparities would be limited. However, if the same students tend to 

experience losses summer after summer, while others gain summer after summer, it would lead to 

a more dramatic “fanning out” of student outcomes as they progress through school. We are 

particularly concerned if the students who exhibit the greatest summer losses also tend to be from 

historically marginalized student populations (a question outside the scope of the current paper 

and difficult to tackle with the data at hand).  

To explore this question empirically, we examine from our multilevel models the estimated 

covariances of students’ summer losses across grades.8 Table 4 (ELA) and Table 5 (math) present 

                                                 
8 Returning briefly to Equation (1) for a concrete example, consider the covariance of the π_2i’s (student 

i's estimated change in the summer after 6th grade) with the π_4i’s (in summer after 7th grade). That 

covariance (τ_4,6) captures the extent to which students who lose ground in one summer tend to be the 

same ones who lose ground in the next summer. Like the variances presented earlier, these estimated 

covariances have been empirically Bayes-shrunk to account to some degree of measurement error. 
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these covariances (expressed in correlations). Positive correlations suggest that summer 

gains/losses accrue to the same students across grades in a way that would contribute to the 

widening of end-of-schooling student outcomes. Correlations near zero would suggest gains/losses 

occur somewhat randomly. In ELA, all correlations are positive (between 0.12 and 0.65), and most 

are substantively large. All of these correlations are also positive in math, ranging between 0.10 

and 0.65. This suggests that students’ experiences across summers tend to be similar. Those who 

lose ground one summer are more likely to also lose in the next.  

(RQ4) Proportion of Variation in Outcomes that Arises in Summers  

Taken together, these three factors—(1) slightly negative mean summer losses, (2) large 

variances in summer loss/gains, and (3) systematic gain/loss patterns across summers—imply that 

end-of-school achievement disparities arise partly during the summer. How large of a role do 

summers play? To consider this question, we begin by presenting a thought experiment designed 

to characterize the role of summers between grade 1 and 8. We imagine a hypothetical scenario in 

which all students enter 1st grade at the exact same achievement level, and all students experience 

the exact same (let’s say, the mean) learning gain in each grade while school is in session. If there 

were no summer periods, all students in this scenario would end 8th grade with the same test score, 

because no variation in gains arises while in school. We now return to the results from our 

multilevel model to characterize three plausible student experiences during the summers following 

each grade: The typical gain among students in the top, middle, and bottom thirds of a given 

summer’s gain/loss distribution.9 We now illustrate these three levels of summer experiences in 

                                                 
9 We split the distribution of student-specific, empirical Bayes shrunken summer learning gain/loss 

estimates into a top, middle, and bottom tercile and then calculate the mean learning gain within each of 

those terciles. We do this separately for residuals for each summer following a school year between first 

and 8th grade.  
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Figure 6 (ELA in top panel, math in bottom panel), while assuming school year gains are always 

equal (i.e., parallel slopes of dashed blue lines fall to spring).  

This figure shows how the differences in summer experiences by themselves could lead to 

sizeable achievement over time. In ELA, the spread in test scores at the end of 8th grade is from 

about 185 to 255 test score points (and about 200 to 265 in math)—around 2.5 standard deviations 

of spring 8th grade RIT scores. This thought experiment illustrates the idea that, even in an ideal 

world where school inequities could be eliminated, achievement gaps would arise simply because 

of the summer break. The “fanning out” of achievement during these school-age years would need 

to be addressed in large part with respect to summer experiences.  

Finally, to put a point on the question of the summer’s role in achievement disparities, we 

calculate for each student the sum of all fluctuations in their test scores during a panel (here, from 

the start of 1st to the end of 5th grade) and then calculate what percentage of those fluctuations 

arose during summers. For a student who experiences no change in their scores from the start to 

the end of the summers (i.e., always flat slopes in the summers), this proportion would be close to 

zero. For a student who year after year exhibits summer learning loss (or gains), this proportion 

would be larger. In Figure 7, we present the distribution of those proportions across students. On 

average, summer gains/losses account for 19.4 percent of students’ test score changes between 1st 

and 5th grade occur during the summer (19.3 for math). However, for some students, summer 

fluctuations account for much more—even upwards of 30 percent—of where they end up.  

Conclusion 

 

Reflections on Findings 

In this paper, we conduct a thorough exploration of the seasonality of learning from a 

dataset covering nearly 18 million students in 2008 through 2016 across all 50 states. We focus on 
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characterizing the degree of variability in students’ summer experiences and the role of summers 

in contributing to end-of-school achievement disparities. We find that students do indeed tend to 

lose ground during the summer period in both math and ELA. We add to the existing research by 

also estimating the variance across students in summer learning loss: For instance, in the summer 

after 2nd grade, the 95 percent plausible value range indicates that some students will lose as much 

as 16.3 test score points in math during summer, while other students could gain up to 6.8 test 

score points (relative to a mean loss of 4.8 points). Students also exhibit significant variance in 

school year learning, however the lower bounds of the 95 percent plausible value ranges during 

the school year tend to be much closer to zero. This means that, while some students learn more 

than others during the school year, most students are moving in the same direction—that is, making 

learning gains—while school is in session.  

The same cannot be said for summers. During the summer, a little more than half of 

students exhibit summer learning losses, while the others exhibit summer learning gains. It is clear 

that the summer period is a particularly variable time for students. We find that many students can 

in fact maintain average school-year learning rates during the summer in the absence of formal 

schooling. Other students, however, will lose nearly as much as what is typically gained in the 

preceding school year. This remarkable variability in summer learning rates appears to be a strong 

contributor to widening achievement disparities as students move through school. On average, 

about 19 percent of the fluctuations in students’ achievement between 1st and 5th grade occurs 

during the summer. However, for some students, summers account for as much as 30 percent. This 

is a particularly outsized influence given that the summer makes up only about a quarter of each 

calendar year.   
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Study Limitations 

First and foremost, the NWEA dataset does not include some key student variables that 

one would want available to more deeply understand the between-student variance in summer 

learning rates (e.g., FRPL status, language status, special education status). Moreover, a key 

component of the learning equation is unavailable to us in the NWEA data—links to individual 

teachers. In addition, the current study rests on the assumption that NWEA’s RIT scores are a 

suitably valid measure of student math and reading skills in both the fall and spring and over time 

(i.e., the vertical scaling). NWEA’s MAP test is a formative assessment without stakes, and it is 

not entirely clear that there are incentives in place for students and teachers to take it equally 

seriously in the fall and spring. Students tend to spend slightly less time on the fall tests than their 

spring tests. One would be concerned if this signals that students do not put forward as much effort 

on their fall assessments, thus making summer learning losses appear larger than they actually are. 

We believe that the difference in time spent is not large (about 10 additional seconds per item, on 

average), and we find that controlling for time spent on test affects the results very little. In 

addition, most of the analyses herein do not rely on making direct comparisons across distal grades, 

thus reducing reliance on vertical scaling properties for these particular inferences. That said, the 

findings herein should be considered with this caveat in mind.  

Implications  

Our results do show that achievement disparities widen during school years. As such, we 

should of course continue to develop policies that change how students experience schools, 

particularly around issues of access. On the other hand, we find that—even in an ideal scenario in 

which students all learn the same amount during the school year—the time spent out of school in 
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summer break, by itself, gives rise to much of the dramatic spread of achievement outcomes, on 

the order of several standard deviations.  

A natural policy idea, then, is to extend the school year to reduce summer atrophy and 

minimize opportunities for this divergence to occur. However existing research on year-round 

school calendars does not indicate that SLL is mitigated by these schedules (Graves, 2011; 

McMullen & Rouse, 2012). It is possible that year-round calendars implemented to address over-

crowding (a common impetus) may have different impacts on learning than year-round calendars 

implemented explicitly to reduce SLL, but to our knowledge this hypothesis has not been tested.  

Another policy lever might be focus on programs that bridge the gap between May and 

August like summer school. The causal evaluation of summer school is often fraught, given the 

non-random selection of who is required to enroll and known issues around low attendance 

(especially in higher grades). Yet there is growing evidence that summer interventions can help 

mitigate students’ SLL (Kim & Quinn, 2013; McCombs et al., 2012; McCombs et al., 2015). For 

instance, seven New Mexico school districts randomized early grade children in low-income 

schools into an ambitious (and presumably expensive) summer program called K-3+, that 

essentially amounted to a full-blown extension of the typical school year for much of the summer 

period. Early results from the experimental study indicated that children assigned to K-3+ 

exhibited stronger literacy outcomes across four domains of the Woodcock Johnson achievement 

assessment (Cann, Karakaplan, Lubke, & Rowland, 2015).   

Finally, it remains an open—but important—question whether schools can or should be 

held accountable for students’ summer learning experiences (for a discussion, see McEachin & 

Atteberry, 2017). On the one hand, schools do make some efforts to provide curricular guidance 

for students after the school year ends (e.g., summer reading books). On the other hand, if some 
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schools serve students who are systematically more likely to lose ground during the summer, then 

those schools face a quite different challenge at the start of each school to bring their students back 

to where they left off when school ended the previous spring. Traditional statewide testing systems 

would not be able to detect such a pattern, and school accountability measures based on spring-

only scores essentially conflate schools’ impacts on both school year and summer learning.  

Next Steps for SLL 

The objective of this paper is to document the magnitude of a social problem—the role of 

summers in the “fanning out” of student achievement outcomes as students move through school. 

While we can conclude that this happens and to what extent, the current dataset is not well-

positioned to understand why summer learning patterns are so varied across students. Though it is 

an important first step to know when inequality arises and how unequal the learning patterns are, 

the obvious next question is: What accounts for that variation?  

In some sense we have reached a precipice on SLL research. It seems clear that summers 

play a key role in outcome inequality and that the range of students’ summer learning patterns is 

sizeable. This variability may fall partly along racial and socioeconomic lines (Burkam et al., 2004; 

Entwisle & Alexander, 1992; Gershenson, 2013; Quinn, 2014). However, demographic factors do 

not account for much of the story here. In an insightful SLL study by Burkam et al. (2004) using 

ECLS-K:1999 data, the authors leverage the parent surveys of children’s home and summer 

activities, in conjunction with student gender, racial, and socio-economic demographics—that is, 

most of the first-order candidates for explaining variability. However, they can explain only about 

13 percent of the variance in learning gains in the summer after K. New research is needed to 

reconcile the fact that summer learning differs dramatically from child to child, but to date we have 

little insight into what drives that variation.   



26 
 

Tables 

 

Table 1. Descriptive Statistics in the Nation, in Full Dataset, in Analytic Sample in 2011-12 

 
FN: Data for U.S. public school population comes from the NCES Common Core of Data and has been restricted 

to public schools (https://nces.ed.gov/ccd/). FRPL status is not available at the student level in the NWEA data. The 

Appendix B sample includes more NWEA students because it does not require students to have as long of a panel of 

available test scores to be included. The primary analytic sample used in the main narrative requires students to 

have up to ten available test scores in a row without missing data.    

Level Statistic

All U.S. 

Public Schools

Full NWEA 

Dataset

App B: 

Analytic Sample

Primary: Analytic 

Sample

% FRPL 0.46 n/a  n/a  n/a

% Black 0.16 0.12  0.11  0.12

% Hispanic 0.24 0.12  0.12  0.09

% Asian 0.05 0.04  0.04  0.03

% White 0.52 0.53  0.58  0.60

% Male 0.51 0.51  0.50  0.50

Total N of Students in 2012 49,256,120       5,469,366          1,892,098          260,037            

 -                     -                     -                    

Average Enrollment 532 486  432  391

Mean % FRPL 0.50 0.50  0.48  0.51

Mean % Black 0.15 0.15  0.12  0.17

Mean % Hispanic 0.21 0.17  0.16  0.13

Mean % Asian 0.04 0.03  0.03  0.03

Mean % White 0.56 0.60  0.63  0.60

% of Schools in Urban Locale 0.25 0.23  0.22  0.26

% of Schools in Suburban Locale 0.32 0.24  0.25  0.16

% of Schools in Rural Locale 0.43 0.32  0.37  0.47

Total N of Schools in 2012 89,648              32,755               10,533               1,440                

 -                     -                     -                    

Average N of Schools in District 7 9.1  8.8  12.9

Mean % FRPL 0.45 0.36  0.35  0.34

Mean % Black 0.07 0.07  0.06  0.05

Mean % Hispanic 0.13 0.12  0.11  0.11

Mean % Asian 0.02 0.02  0.02  0.02

Mean % White 0.73 0.76  0.78  0.78

Mean % Male 0.52 0.52  0.51  0.51

Mean Stu:Tch Ratio 14.5 14.8  14.4  13.9

% of Districts in Urban Locale 0.06 0.04  0.03  0.05

% of Districts in Suburban Locale 0.29 0.20  0.19  0.17

% of Districts in Rural Locale 0.63 0.44  0.51  0.51

Total N of Districts in 2012 13,273              7,437                 3,242                 1,093                

Student-

Level

School-

Level

District-

Level
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Table 2. ELA: School-Year & Summer Learning Gains/Losses, Student-Level Standard Deviations, 

95% Plausible Value Ranges across Students  

  

Grade 1 coeff (beta) 23.7 ***  -6.6 *** 28% 80% 0.41 1.6 55% 114%

Grade 1 (se of beta) (0.05)  (0.05)

Grade 1 stud sd (tau) 9.7 ***  10.4 ***

Grade 1 (stud 95% PVR)  

Grade 2 coeff (beta) 18.5 ***  -3.9 *** 21% 109% 0.56 1.7 49% 93%

Grade 2 (se of beta) (0.05)  (0.04)

Grade 2 stud sd (tau) 10.3 ***  6.8 ***

Grade 2 (stud 95% PVR)  

Grade 3 coeff (beta) 13.3 ***  -3.4 *** 26% 119% 0.61 1.4 45% 98%

Grade 3 (se of beta) (0.05)  (0.04)

Grade 3 stud sd (tau) 8.1 ***  4.9 ***

Grade 3 (stud 95% PVR)  

Grade 4 coeff (beta) 10.1 ***  -2.6 *** 26% 132% 0.67 1.8 59% 118%

Grade 4 (se of beta) (0.04)  (0.04)

Grade 4 stud sd (tau) 6.8 ***  4.7 ***

Grade 4 (stud 95% PVR)  

Grade 5 coeff (beta) 7.8 ***  -2.2 *** 28% 204% 1.04 2.5 103% 169%

Grade 5 (se of beta) (0.05)  (0.04)

Grade 5 stud sd (tau) 8.1 ***  5.6 ***

Grade 5 (stud 95% PVR)  

Grade 6 coeff (beta) 6.4 ***  -1.6 *** 25% 236% 1.20 3.3 125% 186%

Grade 6 (se of beta) (0.05)  (0.04)

Grade 6 stud sd (tau) 7.7 ***  5.3 ***

Grade 6 (stud 95% PVR)  

Grade 7 coeff (beta) 5.2 ***  -0.9 *** 17% 275% 1.40 5.2 154% 194%

Grade 7 (se of beta) (0.05)  (0.04)

Grade 7 stud sd (tau) 7.3 ***  4.7 ***

Grade 7 (stud 95% PVR)  

Grade 8 coeff (beta) 4.4 ***  n/a 258% 1.32 n/a n/a n/a

Grade 8 (se of beta) (0.04)  

Grade 8 stud sd (tau) 5.8 ***  

Grade 8 (stud 95% PVR)  

Summer: 

Ratio of 

SD to 

Mean 

Gain

Summer: 

% of SY 

Gained @ 

Top of 

PVR

Summer: 

% of SY 

Lost @ 

Low of 

PVR

Post-Hoc Statistics for Given Grade

Means: 

% of 

Schyr 

Gain Lost 

in Summer

% More 

Gained @ 

Top of 

PVR in 

Schyr

Schyr:

Ratio of

SD to 

Mean 

Gain

(-2.6 to 29.3) (-13.0 to 6.3)

(-3.2 to 23.4) (-11.9 to 6.7)

(-8.1 to 23.8)

(-8.7 to 21.4) (-11.9 to 8.8)

(-9.1 to 19.6) (-10.1 to 8.4)

(-7.0 to 15.9)

Model-Based Estimates

(-13.2 to 8.8)

(4.6 to 42.7) (-26.9 to 13.7)

(-1.6 to 38.7) (-17.2 to 9.3)

Gains/ Losses

during the

School Year

Gains/ Losses

during the

Following 

Summer
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Table 3. Math: School-Year & Summer Learning Gains/Losses, Student-Level Standard Deviations, 

95% Plausible Value Ranges across Students  

  

Grade 1 coeff (beta) 24.0 ***  -6.4 *** 27% 91% 0.46 1.7 58% 114%

Grade 1 (se of beta) (0.05)  (0.05)

Grade 1 stud sd (tau) 11.1 ***  10.7 ***

Grade 1 (stud 95% PVR)  

Grade 2 coeff (beta) 18.6 ***  -4.8 *** 26% 92% 0.47 1.2 32% 88%

Grade 2 (se of beta) (0.04)  (0.04)

Grade 2 stud sd (tau) 8.7 ***  5.9 ***

Grade 2 (stud 95% PVR)  

Grade 3 coeff (beta) 16.5 ***  -4.6 *** 28% 78% 0.40 0.8 12% 73%

Grade 3 (se of beta) (0.04)  (0.03)

Grade 3 stud sd (tau) 6.6 ***  3.7 ***

Grade 3 (stud 95% PVR)  

Grade 4 coeff (beta) 14.2 ***  -4.3 *** 30% 86% 0.44 1.1 28% 96%

Grade 4 (se of beta) (0.04)  (0.03)

Grade 4 stud sd (tau) 6.2 ***  4.7 ***

Grade 4 (stud 95% PVR)  

Grade 5 coeff (beta) 11.7 ***  -4.0 *** 34% 136% 0.69 1.3 51% 121%

Grade 5 (se of beta) (0.05)  (0.04)

Grade 5 stud sd (tau) 8.1 ***  5.2 ***

Grade 5 (stud 95% PVR)  

Grade 6 coeff (beta) 9.8 ***  -2.7 *** 28% 144% 0.73 1.8 61% 127%

Grade 6 (se of beta) (0.05)  (0.04)

Grade 6 stud sd (tau) 7.2 ***  4.9 ***

Grade 6 (stud 95% PVR)  

Grade 7 coeff (beta) 8.1 ***  -2.0 *** 25% 179% 0.91 2.3 86% 136%

Grade 7 (se of beta) (0.05)  (0.04)

Grade 7 stud sd (tau) 7.4 ***  4.6 ***

Grade 7 (stud 95% PVR)  

Grade 8 coeff (beta) 6.5 ***  n/a 163% 0.83 n/a n/a n/a

Grade 8 (se of beta) (0.04)  

Grade 8 stud sd (tau) 5.4 ***  

Grade 8 (stud 95% PVR)  

Gains/ Losses

during the

School Year

Gains/ Losses

during the

Following 

Summer

Means: 

% of 

Schyr 

Gain Lost 

in Summer

% More 

Gained @ 

Top of 

PVR in 

Schyr

Schyr:

Ratio of

SD to 

Mean 

Gain

Summer: 

Ratio of 

SD to 

Mean 

Gain

Summer: 

% of SY 

Gained @ 

Top of 

PVR

Summer: 

% of SY 

Lost @ 

Low of 

PVR

Model-Based Estimates Post-Hoc Statistics for Given Grade

(2.2 to 45.9) (-27.4 to 14.6)

(1.6 to 35.6) (-16.3 to 6.8)

(3.6 to 29.4) (-12.0 to 2.7)

(2.0 to 26.3) (-13.6 to 4.9)

(-4.2 to 27.5) (-14.2 to 6.2)

(-4.4 to 23.9) (-12.4 to 6.9)

(-6.4 to 22.6) (-11.0 to 7.0)

(-4.1 to 17.2)
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Table 4. ELA: Student-Level Correlations of Estimated Summer Gains, across Grades 

 
FN: The model is run separately on early grades and later grades. Because the panel is only 9 years long, very few (less than 1 

percent) of students have all 19 test scores between first through eighth grades. We therefore cannot estimate correlations across 

these two models.   

Summer After… Grade 01 Grade 02 Grade 03 Grade 04 Grade 05 Grade 06 Grade 07

Grade 01 1.00

Grade 02 0.65 1.00

Grade 03 0.28 0.57 1.00

Grade 04 0.20 0.25 0.56 1.00

Grade 05 0.17 0.15 0.19 0.57 1.00

Grade 06 0.09 0.07 0.11 0.07 0.54 1.00

Grade 07 0.05 0.04 0.05 0.06 0.12 0.57 1.00
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Table 5 Math: Correlation Matrix Across Students’ Summers Losses 

 
FN: The model is run separately on early grades and later grades. Because the panel is only 9 years long, very few (less than 1 

percent) of students have all 19 test scores between first through eighth grades. We therefore cannot estimate correlations 

across these two models. 

Summer After… Grade 01 Grade 02 Grade 03 Grade 04 Grade 05 Grade 06 Grade 07

Grade 01 1.00

Grade 02 0.65 1.00

Grade 03 0.15 0.43 1.00

Grade 04 0.09 0.15 0.49 1.00

Grade 05 0.04 0.05 0.03 0.53 1.00

Grade 06 -0.01 0.06 0.06 0.11 0.42 1.00

Grade 07 -0.01 0.04 0.04 0.08 0.10 0.53 1.00
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Figures 

 

Figure 1. Compare Studies: Datasets, Data Years, Grades Included, Number of Students, Location  

 
FN: 1 BSS (Beginning School Study); 2 ECLS-K (Early Childhood Longitudinal Study: Kindergarten Class of 1999); 

3 APSCC (Activity Pattern Survey of California Children; 4 ATUS (American Time Use Study. (time-diary surveys); 

5 Northwest Evaluation Association-- current study. *This paper uses data from 17,212 students but does not count 

the subset of students for whom summer learning can be estimated. We know from other studies using ECLS-K this 

is about 4,000 students. 

Authors

Publication 

Year Dataset

Years Since 

Data Collected

Summers After  

Grades…

# of

Students Geography

Heyns 1978 unnamed 47 years prior 6th 3,000 Atlanta

Entwisle & 

Alexander
1992 BSS 

1 2019 years prior 1st, 2nd 790 Baltimore

Allinder, Fuchs, 

Fuchs, & Hamlett
1992 unnamed

At least 27 years 

prior
2nd, 3rd, 4th 275

2 rural schools 

in a midwest 

state

Alexander, Entwisle, 

& Olson
2001 BSS 

1 32 years prior 1st, 2nd, 3rd, 4th 678 Baltimore

Burkam, Ready, 

Lee, LoGerfo
2004 ECLS-K

 2 20 years prior K 3664
nationally 

representative

Downey, von 

Hippel, & Broh
2004 ECLS-K

 2 20 years prior K ~4000*
nationally 

representative

Borman, Benson, & 

Overman
2005 "Teach Baltimore" 19 years prior K (2 cohorts) 303

Baltimore high- 

povery schools

Alexander, Entwisle, 

& Olson
2007 BSS 

1 32 years prior 1st, 2nd, 3rd, 4th 326 Baltimore

Downey, von 

Hippel, Hughes
2008

ECLS-K
 2

 + 

Census
20 years prior K 4217

nationally 

representative

Benson & Borman 2010
ECLS-K

 2
 + 

Census
20 years prior K 4180

nationally 

representative

Skibbe, Grimm, 

Bowles, & Morrison
2012 unnamed 13 years prior Pre-k, K, 1st 383

1 suburban 

midwest town

Gershenson 2013
APSCC 

3
 /

ATUS 
4

29 years prior / 

9 years prior
n/a

628 / 

23,348

California / 

US

Quinn 2014 ECLS-K
 2 20 years prior K 3043

nationally 

representative

Current Study -- NWEA
 5 3 years prior

1st, 2nd, 3rd, 4th, 

5th, 6th, 7th, 8th
18 million

Across all US 

states
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Figure 2. Illustration of the Timeline for Observed and Projected RIT Test Scores 

 
FN: Student 1: Observed scores in orange, projected scores in green. Student 2: Observed scores in red, 

projected scores in blue. 
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Figure 3. ELA and Math: Estimated Mean School Year Gains and Summer Losses 
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Figure 4. ELA: Boxplot of Students’ Empirical Bayes Estimated Gains/Losses, across Grades 
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Figure 5. Math: Boxplot of Students’ Empirical Bayes Estimated Gains/Losses, across Grades 

  



36 
 

Figure 6. Math and ELA: Assume Equal Learning in School, Three Levels of Summer Gains/Losses 

  



37 
 

Figure 7. ELA and Math: Proportion of Students’ Test Score Fluctuations Occurring in Summers 
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Appendix A. School Calendar Dates and Projected RIT Scores 

 

Approach to Calendar Data Collection 

One unique aspect of the current project was to collect, clean, and incorporate a new source 

of information about school years into both the current analyses, as well as to share the information 

back with our research partner NWEA to improve their own internal analyses. We collected 

longitudinal information on school calendars at the district level for all districts in a set of eleven 

states that have the largest percentage of students with MAP scores. In fact, 44.4 percent of all student-

year observations from the NWEA data come from this subset of states.  

In Figure 1, we show a hypothetical timeline for a given student’s test-taking from 3rd through 

5th grade. The Figure illustrates that students do not take MAP tests exactly on the first and last day 

of school—in fact, students often take these tests three to six weeks before/after the school year starts 

or ends. As a result, some of the time between the spring and fall administrations of the test is actually 

spent in school. However, we do not observe school-year start or end dates, leaving us with a distorted 

sense of how long students spend without the structure of the school year—the very time when we 

suspect learning rates may slow. Without knowledge of school-year calendars, we would misattribute 

some of the learning that takes place during the school year to the summer period, potentially masking 

some of the actual variation in the summer period. We therefore obtained the school-year calendar 

information through original data collection.  

 

Figure A1. Illustration of the Need for School Calendar Data 

 
 

The scope of this data collection task varied considerably, and it depended largely on whether 

each state has adopted a statewide policy on school year start- and end-dates, or whether state 

departments of education kept this information in existing data files. For example, the process for 

South Carolina was relatively simple because, beginning in August of 2007, South Carolina adopted 

new statewide legislation that specified consistent school start and end dates. We have found online 

a document that reported each of South Carolina school districts’ calendars from 2010-11 through 

2015-16. We examined the extent to which school districts actually used the uniform start and end 

dates mandated by the legislation (district level calendars are no longer available prior to 2010-11).  In 

the years of district-level calendar that we have, it appears that the vast majority of South Carolina 

districts uses the same school year start and end dates that is described in the legislation: School 

typically starts on the third Monday of August, and the last day of school falls on the first Thursday 

of June.  

In the eleven other states in which we conducted data collection, there is no statewide 

legislation that specifies district start and end dates. To gather the data in other states and years, we 

What	we	observe	as	"summer"																
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worked with a team of undergraduate and graduate student research assistants in efforts to collect 

complete records on school district calendars across our twelve-state sample. The first step was to 

exploit all online resources to find existing records from state- and district-level education 

departments. We also used an internet archive website (https://archive.org/web/) to search for this 

information that had potentially been archived in prior years. In cases where such documentation 

could not be found, research assistants also examined news sources archived online that document 

district-wide school calendars. We found that newspapers often run stories about the school year 

timeline. Finally, once all indirect methods of obtaining school calendar records have been exhausted, 

research assistants contacted appropriate district or state personnel directly to request the information.  

Altogether, we proposed collecting school year start and end dates in 3,119 unique districts 

across eleven states and nine school years, for a total of about 28,000 district-years. We collected 

23,223 school year start dates and 20,807 school year end dates. We therefore found about 77 percent 

of the district-year calendar dates we sought to find. In Table 1, we present the percentage of districts 

in each state and in each year for which we have collected school year start dates. In green we 

highlight cells that have over 90 percentage coverage, and in red we highlight cells that have less than 

50 percent coverage.  

 

Table A1. District Coverage (Percentage), by State and Year 

 
 

In later years, NWEA also began to collect some school-year start and end dates. We 

combined our original data collection with theirs. Across the entire NWEA dataset in all states and 

years, these efforts allowed us to collect actual calendar start/end dates for 50.3 percent of the 

observed school-years. We refer to these as the “actual calendar dates”, because we also opt to 

extrapolate calendar dates for all districts in which they are missing.   

Using Actual Calendar Dates to Extrapolate Missing Calendar Dates 

In order to project scores for students in districts for which we were unable to recover actual 

calendar dates, we chose to impute approximate school calendar dates under the basic assumption 

that, while there is some variation in when public school districts start and end the school-year, it is 

not large.  For example, in the subset of districts for which NWEA collected school level calendar 

start dates, we observe that the standard deviation of start dates across schools in the same district and 

same year is 8.2 days (8.1 days for end dates). Looking across all the districts in a given state in the 

same year, the standard deviation of start dates is 6.3 days (8.2 for end dates).  

We therefore extrapolated dates privileging these decision rules in the following order: (1) If 

we have actual school calendar data, use that. (2) For schools in a district-year with some school 

State 2008 2009 2010 2011 2012 2013 2014 2015 2016

CO 23.6 23.6 23.6 25.1 24.6 25.6 26.1 86.2 77.6

IA 93.1 96.4 96.4 96.4 96.4 96.4 95.8 93.6 93.1

IN 99.1 99.1 99.1 99.2 99.2 98.7 98.7 98.7 98.7

KS 95.6 95.9 96.2 96.5 96.3 96.0 96.3 96.3 94.9

KY 10.9 9.8 100.0 100.0 100.0 100.0 99.4 99.4 99.4

MN 99.4 99.4 99.6 99.6 99.6 99.6 98.5 97.4 54.0

NH 97.7 97.7 97.7 97.7 97.7 97.7 97.2 97.2 96.7

SC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

WA 31.9 43.4 61.1 65.5 65.2 63.9 75.7 91.2 96.3

WI 99.3 98.2 98.6 99.5 99.6 99.6 99.6 99.6 0.0

WV 100.0 100.0 100.0 98.2 100.0 100.0 100.0 100.0 0.0

https://archive.org/web/
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calendar data, use the mean of the start/end dates in the district-year. (3) For a district that has calendar 

data in some years but not others, use the district’s own mean start/end dates across years. (4) For 

districts still missing start/end calendar dates, use the state’s mean dates in the given year. (5) For 

districts in states that have no calendar data in a given year, use the state’s mean calendar dates across 

all years. Because we had calendar data in at least one year for each state, this covered all observations 

in the dataset.  

Projecting RIT Scores to First and Last Day of School 

We leverage the calendar data described above to project scores for individual students to 

what they might have been on the first and last day of school. To do so, we calculate the average daily 

learning rate between each student’s fall and spring NWEA test administrations by dividing the 

change in score by the number of days between the two tests (Quinn, 2014). Extant research finds 

that students’ within school-year achievement growth is approximately linear (Fitzpatrick, Grissmer, 

& Hastedt, 2011). We then calculate both the number of school days between the start of the school 

year and each student’s fall NWEA test, as well as the number of days of school between each 

student’s spring NWEA and the end of the school year. On average, students take the fall test about 

26 days after the first day of school, and they take the spring test 39 days before the last day of school.  

To project scores to the start of the school year, we subtract from the student’s observed fall 

score his or her individual daily learning rate multiplied by the number of days between the first day 

of school and the date of the test. We follow the same procedure for projecting scores to the last day 

of the school year. The correlation between fall observed and projected scores in ELA is 0.996, with 

an RMSE of 2.3 points. The correlation between spring observed and projected scores in ELA is 

0.992, with an RMSE of 2.8 points.  
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Appendix A: Replicate Figure 3 and 4 using Observed Scores 
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Appendix B. Replicate Figure 4 & 5 with 3-Grade Increment 
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